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ABSTRACT

We present a hybrid method for solving the equations of thermal radiative transfer. Our method
combines the Monte Carlo method with a deterministic method to create a hybrid method. In the
Monte Carlo portion of our hybrid method, we use the Monte Carlo particle transport method to
solve a linear transport equation without scattering events. In the deterministic portion, we use the
finite element method to compute the scattering source term in the linear transport equation. We
converge the scattering source in an iteration. We call our method “Hybrid Second Moment”, and
we demonstrate it by solving a gray, steady-state, linear transport equation in two spatial dimensions.

Keywords: Monte Carlo, finite elements, hybrid

1. INTRODUCTION

The equations of thermal radiative transfer (TRT) are a useful model for the balance of energy in matter and
radiation, as long as the matter emissivity is approximately Planckian, the matter absorptivity is approx-
imately proportional to the radiation intensity with a proportionality coefficient that depends only on the
temperature and density of the matter, and the radiation frequency band is hard enough that electromagnetic
wave effects are insignificant, but soft enough that photo-electronic interactions dominate photo-nuclear.

The TRT system of equations is non-linear. Monte Carlo (MC) methods for TRT often use implicit
Monte Carlo (IMC) to linearize the system [1]. The solution to the resulting linear transport equation
can be computed using MC particle transport, but the random variability of MC creates statistical noise.
Deterministic methods do not have noise, but often discretize phase space dimensions which MC treats
as continuous. For example, discrete ordinates (𝑆𝑁 ) imposes an angular discretization. This introduces a
discretization error called “ray effects”, which can be severe as the solution is typically not smooth in angle.

Storing the coefficient matrix for the discrete linear system in 𝑆𝑁 discretizations is infeasible because it is
very large relative to computer memory capacities. Lagging the scattering source term allows for matrix-free
inversion using source iteration (SI) [2]. SI converges arbitrarily slowly in the thick diffusion limit (TDL) [3].
IMC runs arbitrarily slowly in the TDL [4]. Diffusion acceleration can improve SI convergence [5] and IMC
runtimes [6, 7, 8]. Moment methods, like Variable Eddington Factor (VEF) and Second Moment Method
(SMM), improve SI convergence [9, 10]. Hybrid moment methods improve MC runtimes [11, 12, 13].

We introduce a hybrid moment method called “Hybrid Second Moment” (HSM), which improves on our
earlier hybrid method [14]. We still use MC to compute the SMM correction tensor, but we no longer
differentiate it, because differentiating a noisy quantity amplifies the noise. We avoid noise amplification by
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solving the first-order form of the SMM equations, which has only one derivative on the SMM correction
tensor instead of two, and we use a recently-published finite element discretization of the SMM equations
to offload the derivative [15]. We also introduce a logical separation of the fixed sources from the scattering
source, improve iterative convergence by resetting the pseudo-random number generator seed, and demon-
strate the efficacy of HSM by solving a more complicated transport problem which has a non-zero inflow
function as well as a non-zero SMM boundary correction factor.

2. HYBRID SECOND MOMENT METHOD

The kernel of the IMC linearization of the TRT system is a linear transport equation with an inflow boundary
condition,

𝛀 · ∇𝜓 + 𝜎𝑡𝜓 =
𝜎𝑠

4𝜋

∫
𝜓 dΩ′ + 𝑞 , (1a)

𝜓(x,𝛀) = �̄�(x,𝛀) , x ∈ 𝜕D and 𝛀 · n < 0 . (1b)

See Table I for definitions of the symbols in Equations (1a) and (1b), and all subsequent equations. Define
the zeroth, first, and second angular moments of the radiation intensity,

𝜙(x) =
∫
S2
𝜓(x,𝛀, 𝐸, 𝑡) dΩ , 𝑱(x) =

∫
S2
𝛀𝜓(x,𝛀, 𝐸, 𝑡) dΩ , P(x) =

∫
S2
𝛀 ⊗ 𝛀𝜓(x,𝛀, 𝐸, 𝑡) dΩ .

(2)
Now take the zeroth and first angular moments of Equation (1a) to get,

∇ · 𝑱 + 𝜎𝑎𝜙 = 𝑄0 , (3a)

∇ · P + 𝜎𝑡 𝑱 = 𝑸1 , (3b)

where𝑄0 and𝑸1 are the zeroth and first angular moments of the fixed source 𝑞. The system of Equations (3a)
and (3b) is unclosed because it has ten unknowns and only four equations: one radiation relativistic mass
(energy) conservation equation and three radiation momentum conservation equations. The independent
variables 𝜙, 𝑱, and P consist of 1+3+6=10 unknowns because they are a scalar, vector, and symmetric tensor.

Derive a boundary condition for Equations (3a) and (3b) by defining 𝐽±𝑛 =
∫
𝛀·n≷0 𝛀 · n𝜓 dΩ where n is the

outward unit normal on the boundary of the domain, and performing algebraic manipulation,

𝑱 · n = 𝐽−𝑛 + 𝐽+𝑛 = 2𝐽−𝑛 + (𝐽+𝑛 − 𝐽−𝑛 ) = 2𝐽−𝑛 +
∫
S2
|𝛀 · n| 𝜓 dΩ . (4)

Define 𝐵(𝜓) =
∫
S2 |𝛀 · n| 𝜓 dΩ and 𝐽in =

∫
𝛀·n<0 𝛀 · n �̄� dΩ. The unclosed boundary condition is,

𝑱 · n = 𝐵(𝜓) + 2𝐽in . (5)

The SMM closure for the moment system of Equations (3a) and (3b) is P = T + 1
3I𝜑, where T =

∫
𝛀 ⊗

𝛀𝜓 dΩ− 1
3I

∫
𝜓 dΩ is called the correction tensor. The SMM closure for Equation (5) is 𝐵 = 𝛽 + 1

2𝜑, where
𝛽(𝜓) =

∫
S2 |𝛀 ·n| 𝜓 dΩ− 1

2

∫
𝜓 dΩ. Substituting the SMM closures results in the SMM system of equations,

∇ · 𝑱 + 𝜎𝑎𝜑 = 𝑄0 , x ∈ D , (6a)
1
3
∇𝜑 + 𝜎𝑡 𝑱 = 𝑸1 − ∇ · T , x ∈ D , (6b)

𝑱 · n =
1
2
𝜑 + 2𝐽in + 𝛽 , x ∈ 𝜕D , (6c)



where we have switched from using 𝜙 to 𝜑 to emphasize that, even though the SMM system of Equations (6a)
to (6c) is an equivalent reformulation of Equations (1a) and (1b), 𝜑 can differ from the 𝜙 defined in
Equation (2) after discretization, which is the case for our HSM method.

Figure 1 shows the SMM algorithm. Our HSM method uses the Monte Carlo particle method without
scattering events to solve Equation (1a) with boundary condition Equation (1b) (left side of Figure 1) and
compute the closures T and 𝛽 as Monte Carlo estimators. We then solve Equations (6a) to (6c) (right side
of Figure 1) using a deterministic method, and use the solution 𝜑 to compute the scattering source, which
we converge in an iteration.

Ω · ∇ψ + σtψ =
σs
4π
φ+ q ,

ψ(x,Ω) = ψ̄(x,Ω) , x ∈ ∂D and Ω · n < 0 .

∇ · J + σaφ = Q0 , x ∈ D ,

1
3∇φ+ σtJ = Q1 −∇ ·T , x ∈ D ,

J · n = 1
2φ+ 2Jin + β , x ∈ ∂D .

T(ψ) =
∫
Ω⊗Ωψ dΩ− 1

3I
∫
ψ dΩ

β(ψ) =
∫
|Ω · n|ψ dΩ− 1

2

∫
ψ dΩ

φ

Figure 1. SMM algorithm [15].

2.1. Deterministic Component of HSM

In Table I, we briefly define some symbols that appear below, such as 𝑌𝑝 and 𝑅𝑇𝑝. Detailed definitions are
in [15]. The finite element method weak form for the mixed problem is: find (𝜑, 𝑱) ∈ 𝑌𝑝 × 𝑅𝑇𝑝 such that,∫

𝑢 ∇ · 𝑱 dx +
∫

𝜎𝑎 𝑢𝜑 dx =

∫
𝑢 𝑄0 dx , ∀𝑢 ∈ 𝑌𝑝 , (7a)

− 1
3

∫
∇ · 𝒗 𝜑 dx +

∫
𝜎𝑡 𝒗 · 𝑱 dx + 2

3

∫
Γ𝑏

(𝒗 · n) (𝑱 · n) d𝑠 =
∫

𝒗 · 𝑸1 dx −
∫
Γ𝑏

𝒗 · Tn d𝑠

+ 2
3

∫
Γ𝑏

(𝒗 · n) (2𝐽in + 𝛽) d𝑠 −
∫
Γ0

⟦𝑣⟧ · {{Tn}} d𝑠 +
∫
∇ℎ𝒗 : T dx ∀𝑣 ∈ 𝑅𝑇𝑝 , (7b)

where the “broken” gradient ∇ℎ, the jump operator ⟦·⟧, and the average operator {{·}} are defined as,

(∇ℎ𝑢) |𝐾 = ∇(𝑢 |𝐾 ) ∀𝐾 ∈ T , ⟦𝑢⟧ =
{
𝑢1 − 𝑢2 F ∈ Γ0

𝑢 F ∈ Γ𝑏
, {{𝑢}} =

{𝑢1 + 𝑢2
2

F ∈ Γ0

𝑢 F ∈ Γ𝑏
. (8)

To derive Equation (7a), let 𝑢 ∈ 𝑌𝑝, multiply Equation (6a) by 𝑢, then integrate over D. Deriving
Equation (7b) requires several steps and employs integration by parts (IBP) rules created using the following
vector calculus identities:

• Product rule for divergence of a scalar (𝑎) times a vector (𝑭):

∇ · (𝑎𝑭) = ∇𝑎 · 𝑭 + 𝑎∇ · 𝑭 , (9)



• Divergence theorem: ∫
𝐾

∇ · 𝑭 dx =

∫
𝜕𝐾

𝑭 · n d𝑠 , (10)

• Product rule for divergence of a vector (𝒗) dotted with a tensor (T):

∇ · (𝒗 · T) = 𝒗 · (∇ · T) + T : ∇𝒗 , (11)

• Double dot product involving vectors (𝒗, n) and a tensor (T):

(𝒗 · T) · n = 𝒗 · (Tn) . (12)

Combining Equation (9) with Equation (10) gives an IBP rule that offloads a derivative from a scalar trial
function to a vector test function and produces a surface integral as a side effect,∫

∇𝑎 · 𝑭 dx = −
∫

𝑎∇ · 𝑭 dx −
∫
𝜕𝐾

𝑎(𝑭 · n) d𝑠 . (13)

Combining Equation (11) with Equation (10) gives an IBP rule that offloads a derivative from a tensor
function to a vector test function and produces a surface integral as a side effect. Subsequent use of
Equation (12) in the integrand of the surface integral gives,∫

𝒗 · ∇ · T dx = −
∫

T : ∇𝒗 dx −
∫
𝜕𝐾

𝒗 · Tn d𝑠 . (14)

The three steps for deriving Equation (7b) are as follows:

2.1.1. Step 1) Integration over element 𝐾

Integrating Equation (6b) over an arbitrary finite element 𝐾 and applying the IBP rules in Equations (13)
and (14) gives,

− 1
3

∫
𝐾

∇ · 𝒗 𝜑 dx + 1
3

∫
𝜕𝐾

𝜑 (𝒗 · n) d𝑠 +
∫
𝐾

𝜎𝑡 𝒗 · 𝑱 dx

=

∫
𝐾

𝒗 · 𝑸1 dx −
∫
𝜕𝐾

𝒗 · Tn d𝑠 +
∫
𝐾

∇𝒗 : T dx ∀𝑣 ∈ 𝑅𝑇𝑝 . (15)

2.1.2. Step 2) Sum over all elements

Summing Equation (15) over all elements 𝐾 ∈ T gives,

− 1
3

∫
∇ · 𝒗 𝜑 dx + 1

3

∫
𝜕D

𝜑 (𝒗 · n) d𝑠 +
∫

𝜎𝑡 𝒗 · 𝑱 dx

=

∫
𝒗 · 𝑸1 dx −

∫
𝜕D

𝒗 · Tn d𝑠 −
∫
Γ0

⟦𝑣⟧ · {{Tn}} d𝑠 +
∫
∇ℎ𝒗 : T dx ∀𝑣 ∈ 𝑅𝑇𝑝 . (16)

2.1.3. Step 3) Enforce boundary condition

Solving Equation (6c) for 𝜑 and substituting into the second term in Equation (16) gives the final result,
Equation (7b).



2.2. Monte Carlo Component of HSM

Consider the iteration diagram in Figure 1 once more. The MC particle transport method, which we use
to compute the solution to the linear transport equation, incorporates the SMM solution 𝜑 shown on the
top edge of the diagram, which allows us to neglect scattering events while tracking the MC particles.
This removes effective scattering events from IMC photon histories, which makes the histories significantly
shorter in the optically-thick, highly absorbing matter that characterizes the TDL.

The bottom edge of the iteration diagram shows the SMM data, T and 𝛽, which we compute during the
Monte Carlo solve. Let T̂ = P̂ − 1

3I𝜙 and 𝛽 = �̂� − 1
2𝜙𝑠 be MC estimators for T and 𝛽 where,

𝜙 =
1
𝑉

∑︁
𝑖

𝑑𝑖𝑤𝑖 , P̂ =
1
𝑉

∑︁
𝑖

𝛀𝑖 ⊗ 𝛀𝑖 𝑑𝑖𝑤𝑖 , �̂� =
2
𝐴

∑︁
𝑖

𝑤𝑖 , 𝜙𝑠 =
2
𝐴

∑︁
𝑖

𝑤𝑖

|𝛀𝑖 · n|
. (17)

Both 𝜙 and P̂ are path-length estimators, so the sum is over paths of length 𝑑𝑖 in the volume 𝑉 , and path 𝑖
is traversed by the MC particle with weight 𝑤𝑖 moving in the direction 𝛀𝑖. Thus, T̂ is a piecewise-constant
tally defined on each element of the mesh. This is in contrast to �̂� and 𝜙𝑠 which are sums over MC particles
with weight 𝑤𝑖 moving in the direction 𝛀𝑖 which pass through a boundary face with area 𝐴 and unit normal
vector n. Thus, 𝛽 and 𝜙𝑠 are piecewise-constant tallies defined on each boundary face of the mesh.

2.3. Properties of HSM

We hypothesize that the error of the HSM solution is 𝑂 (ℎ) + 𝑂 (𝑁−1/2). The first term is due to the ℎ𝑝+1
convergence of the mixed finite element discretization of the SMM system, where 𝑝 = 0 in our case because
we use lowest-order finite elements. Thus, decreasing the numerical error due to the spatial discretization
by a factor of 2 requires decreasing the element width ℎ by the same factor. The second term is due to
arguments arising from the Central Limit Theorem, and thus decreasing the variance of the MC estimators
by a factor of 2 requires increasing the number of MC particles 𝑁 by a factor of 4.

2.4. Implementation Details of HSM

Algorithm 1 shows how an existing Monte Carlo solver can incorporate HSM. The iteration converges when
the relative difference of successive iterates falls below a user-provided threshold [,

max
𝑗
( |𝜙 (𝑖−1)

𝑗
− 𝜙 (𝑖)

𝑗
| / 𝜙 (𝑖−1)

𝑗
) < [ , 𝑗 = 1, . . . , |T | , (18)

where |T | is the number of elements in the mesh.

2.4.1. Solving the linear system

The mixed FEM SMM system of Equations (7a) and (7b) permits hybridization, which replaces the block
system with a smaller system for Lagrange multipliers. The hybridized system has fewer unknowns and is
also symmetric positive definite, which means that we can solve it using conjugate gradient (CG) and we
can precondition using algebraic multigrid (AMG). AMG coarsening produces small grids with few degrees
of freedom, which makes AMG relatively slow on graphics processing units (GPUs), because operations
on the coarse grid have an insufficient amount of work to amortize GPU kernel launch overhead. Solvers
designed for solving the original system on GPUs may outperform AMG+CG on the hybridized system [16].



Algorithm 1 Hybrid Second Moment
1: Input: user-provided boolean value HSM
2: if not HSM then
3: scattering_events← true
4: 𝜙← mc(𝑞, scattering_events)
5: return 𝜙

6: end if
7: scattering_events← false
8: 𝜙 (0) , T̂(0) , 𝛽 (0) ← mc(𝑞, scattering_events)
9: 𝑖 ← 1

10: while not converged(𝜙 (𝑖−1) , 𝜙 (𝑖) ) do
11: 𝜑 (𝑖) ← sm(𝑄0,𝑸1, T̂

(𝑖−1)
, 𝛽 (𝑖−1) )

12: 𝜙temp, T̂temp, 𝛽temp ← mc(𝜑 (𝑖) , scattering_events)
13: 𝜙 (𝑖) ← 𝜙 (0) + 𝜙temp

14: T̂(𝑖) ← T̂(0) + T̂temp
15: 𝛽 (𝑖) ← 𝛽 (0) + 𝛽temp
16: 𝑖 ← 𝑖 + 1
17: end while
18: return 𝜙 (𝑖)

2.4.2. Sampling fixed sources

The fixed source 𝑞 = 𝑞(x,𝛀) is a volume source. Our method for assigning MC particle weights is,

lim
𝑁→∞

𝑁∑︁
𝑖=1

𝑤𝑖 =

∫
D

∫
S2
𝑞 dΩ dx , (19a)

where 𝑁 is the number of MC particles sourced in the volume D and 𝑤𝑖 is the weight of particle 𝑖. Let
𝑈 (𝑎, 𝑏) be a uniformly-distributed random variate on [𝑎, 𝑏]. We use Monte Carlo to integrate,∫

D

∫
S2
𝑞 dΩ dx ≈ 𝑉

𝑁

𝑁∑︁
𝑖=1

𝑞(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , \𝑖 , 𝜙𝑖) , (19b)

𝑉 =

∫
D

∫
S2

dΩ dx , 𝑥𝑖 ← 𝑈 (𝑥min, 𝑥max) , 𝑦𝑖 ← 𝑈 (𝑦min, 𝑦max) , (19c)

𝑧𝑖 ← 𝑈 (𝑧min, 𝑧max) , \𝑖 ← cos−1(𝑈 (−1, 1)) , 𝜙𝑖 ← 𝑈 (0, 2𝜋) , (19d)
where we have assumed that D is a rectangular prism. The fixed source �̄�(x,𝛀) is a surface source. Our
method for assigning MC particle weights is,

lim
𝑀→∞

𝑀∑︁
𝑖=1

𝑤𝑖 =

∫
𝜕D

∫
𝛀·n<0

|𝛀 · n|�̄� dΩ dx , (20a)

where 𝑀 is the number of MC particles sourced on the surface 𝜕D and 𝑤𝑖 is the weight of particle 𝑖. We
use Monte Carlo to integrate,∫

𝜕D

∫
𝛀·n<0

|𝛀 · n|�̄� dΩ dx ≈ 𝑆

𝑀

𝑀∑︁
𝑖=1
|𝛀𝑖 · n|�̄�(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , \𝑖 , 𝜙𝑖) , (20b)



𝑆 =

∫
𝜕D

∫
𝛀·n<0

dΩ dx , (20c)

where x𝑖 are sampled uniformly in 𝜕D and Ω𝑖 are sampled uniformly on the hemisphere of the unit sphere
defined by 𝛀 · n < 0.

2.4.3. Sampling the scattering source

The algorithm for sampling the scattering source resembles that of the fixed source 𝑞 except in Equations (19a)
and (19b) we replace 𝑞 with the product of 𝜎𝑠/(4𝜋) and 𝜑 (𝑖) . We reset the pseudo-random number generator
seed every cycle of the HSM iteration, which means that MC particles are sourced with the same position
and direction every cycle, but with different weights, because 𝜑 (𝑖) ≠ 𝜑 (𝑖−1) and so the scattering source
that we evaluate to determine the MC particle weights changes every cycle. Figure 2 shows that the HSM
iteration converges when we reset the seed (“Seed reset”) and that the iteration does not converge if we do
not reset the seed (“No seed reset”).

(a) Linear vertical axis. (b) Logarithmic vertical axis.

Figure 2. Resetting the pseudo-random number generator seed makes the HSM iteration converge.

3. NUMERICAL RESULTS

We verify the hypothesized convergence rate𝑂 (ℎ) +𝑂 (𝑁−1/2), which defines an error surface that decreases
in height as one traverses simultaneously upward and rightward in Figure 3. By making ℎ small and running
multiple calculations with increasing 𝑁 (“particle scaling study”), we observe the 𝑂 (𝑁−1/2) term in the
hypothesized convergence rate, and by making 𝑁 large and running multiple calculations with decreasing ℎ
(“element scaling study”), we observe the𝑂 (ℎ) term. We use the method of manufactured solutions (MMS).
We let D = [0, 1]2, 𝜎𝑡 = 2, 𝜎𝑠 = 1, and we solve the problem specified by Equations (1a) and (1b) for the
MMS solution in Equation (89) in [17]. We do this by substituting the MMS solution into Equations (1a)
and (1b) and solving for 𝑞 and �̄� and using them in the MC component of our HSM solver, and substituting the
MMS solution into Equations (6a) to (6c) and solving for𝑄0, 𝑸1, and 𝐽in and using them in the deterministic
component of our HSM solver. The MMS solution, shown in Equation (21), is quadratically-anisotropic so
it cannot be computed with the radiation diffusion approximation, it has non-zero closures T ≠ 0 and 𝛽 ≠ 0,



and it has non-zero inflow 𝐽in ≠ 0. The MMS solution is,

𝜓 =
1

4𝜋

(
sin(𝜋𝑥) sin(𝜋𝑦) +𝛀𝑥𝛀𝑦 sin(2𝜋𝑥) sin(2𝜋𝑦) +𝛀2

𝑥 sin
(
5𝜋
2
𝑥 + 𝜋

4

)
sin

(
5𝜋
2
𝑦 + 𝜋

4

)
+ 0.5

)
. (21)

The results in Figure 4 demonstrate that HSM converges under mesh refinement and MC sample augmenta-
tion, and that the rate of convergence with respect to the element width and number of MC particles matches
our hypothesis of 𝑂 (ℎ) + 𝑂 (𝑁−1/2). The slight degradation in convergence at the highest mesh resolution,
appearing as liftoff above the dashed curve at the bottom-left of Figure 4b, is expected behavior because
we distribute a fixed number of MC particles across more and more elements under mesh refinement. We
confirmed that this was the case by running fewer MC particles and observing earlier liftoff.
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Figure 3. Calculation points on the HSM error surface.

(a) Error as number of MC particles increases. (b) Error as element width decreases.

Figure 4. Error of HSM iterate 𝜙 (𝑖) upon convergence.



4. CONCLUSIONS

We presented a hybrid method for solving the equations of thermal radiative transfer. We demonstrated the
method by solving a gray, steady-state, linear transport problem in two spatial dimensions. Future work
includes running HSM on a multi-material problem with optically-thick and optically-thin regions.

Table I. Nomenclature

Symbol Name Symbol Name
x position 𝑌𝑝 the degree-𝑝 Discontinuous Galerkin space
Ω direction of photon travel RT 𝑝 the order 𝑝 Raviart Thomas finite element space

𝜓(x,Ω) radiation intensity 𝑢 finite element test function 𝑢 ∈ 𝑌𝑝
𝜙(x) 0th angular moment of 𝜓 𝒗 finite element test function 𝒗 ∈ RT 𝑝
𝜙 azimuthal angle of the unit sphere F a face in the mesh
\ polar angle of the unit sphere Γ set of unique faces in the mesh

𝑱(x) 1st angular moment of 𝜓 Γ0 set of unique interior faces in the mesh
P(x) 2nd angular moment of 𝜓 Γ𝑏 set of unique faces on the boundary of the mesh
𝜎𝑡 (x) total opacity 𝐾 a finite element
𝜎𝑠 (x) scattering opacity 𝜕𝐾 the boundary of 𝐾
𝜎𝑎 (x) absorption opacity T tessellation of the domain D
𝑞(x,Ω) fixed source ∇ the spatial gradient ∇ = 𝜕

𝜕𝑥
e𝑥 + 𝜕

𝜕𝑦
e𝑦 + 𝜕

𝜕𝑧
e𝑧

𝑄0(x) 0th angular moment of 𝑞 ∇ℎ the local gradient, (∇ℎ𝑢) |𝐾 = ∇(𝑢 |𝐾 ) , ∀𝐾 ∈ T
𝑸1(x) 1st angular moment of 𝑞 ∇· the divergence operator
D computation domain ⊗ the outer product
𝜕D boundary of D : scalar contraction of two tensors
S2 the unit sphere ⟦·⟧ the jump of a function across F
n outward unit normal vector {{·}} average evaluated on both sides of F

�̄�(x,Ω) inflow boundary function ℎ characteristic mesh element length
𝜑 solution of the moment system 𝜖 thick diffusion limit parameter
𝐽in inflow current computed from �̄� [ iteration convergence tolerance (10−3)
T SMM correction tensor 𝑈 (𝑎, 𝑏) uniformly randomly distributed variate on [𝑎, 𝑏]
𝛽 SMM boundary correction factor 𝑂 (·) asymptotic order dependence (“Big O” notation)
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