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Abstract

We prove a theorem relating the variance of estimators for Monte Carlo source iteration methods to a
parameter which becomes infinitesimally small in an important physical regime that arises in radiative
transfer. In our usage, “Monte Carlo source iteration” refers to Monte Carlo Boltzmann transport methods
in which each Monte Carlo particle history includes no more than a single collision. One example of this
approach is modeling the physics of multiple scattering by lagging the scattering source term and iterating
until this term converges.

The theorem that we prove can be used to construct variance reduction techniques which improve the
order of the estimator variance when solving a linear Boltzmann transport equation. This improvement
enables Monte Carlo source iteration calculations that would otherwise require impractically large sample
sizes to achieve practical estimator uncertainties. Our proof relies on the expression of a Monte Carlo
estimator as an expected value of a function of random variables. The function is chosen so that its
expectation is a functional corresponding to the desired physical quantity. We derive this expression using a
characteristic equation for the Boltzmann transport problem. We believe that this is the first postulation of
a theorem relating the asymptotic estimator variance to a limiting case parameter in an important physical
regime for Boltzmann transport, and the first proof of such a theorem.

We highlight the importance of the theorem with an example from the development of a linear transport
method in which the authors of a publication describing the method used the theorem to design a variance
reduction technique that improved the uncertainty of their solution by a factor of about 500 for a proxy
problem from radiative transfer that contains both optically-thick and optically-thin material.

Keywords: Monte Carlo, Variance Reduction, Thick Diffusion Limit

1. Introduction

It is not uncommon to encounter substantial statistical variation when using Monte Carlo to compute the
solution of a Boltzmann transport equation. This variation, or noise, can degrade solution quality enough
that the Monte Carlo estimators become useless. The estimator uncertainty can be systematically reduced
through sample augmentation, but the sample size required for an acceptable solution estimate may be
impractical. Techniques that reduce the estimator variance also reduce the estimator uncertainty, which is
proportional to the variance. The variance of a function of random variables f is,

Var[f ] = E[f2]− (E[f ])2 , (1)

where E[·] is the expectation, or expected value. Equation (1) shows that computing the variance requires
the definition of f and the expectation, which is the first moment of f about the origin over its support.
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The Monte Carlo simulation procedure can be viewed as defining f , generating random variates of f , then
averaging the variates. If Var[f ] is too large, then Monte Carlo may be too expensive to solve the problem.

Asymptotic analysis is a technique that can be used to study how a numerical method behaves as an
asymptotic analysis parameter approaches a particular limit. If a calculation which exercises the physical
regime associated with the limiting case produces a noisy Monte Carlo estimator, then the estimator variance
may have an undesirable dependence on the asymptotic analysis parameter. In the worst case, the estimator
variance approaches infinity as the asymptotic analysis parameter approaches its limit. In the best case, the
estimator variance approaches zero. If the limiting case is important to the application, then the difference
between the best case and the worst case is the difference between a useful Monte Carlo method and a
useless one. The theorem that we prove is a useful mathematical tool for this exact scenario.

In that sense, the theorem can be used as a powerful tool for designing variance reduction techniques.
Variance reduction is an algorithmic development process aimed at improving Monte Carlo methods by re-
ducing the variance of a Monte Carlo estimator. Modifying the Monte Carlo method to compute an estimator
which has a variance that approaches zero in the limiting case would provide a substantial improvement:
zero variance instead of infinite variance in the limit. Providing a proof of the theorem gives confidence
that the empirical results (variance estimates) will match the theoretical result (analytic variances) when
the number of samples is sufficiently large.

Our proof relies on the expression of a Monte Carlo estimator as an expected value of a function of
random variables. This is a perspective which often appears in descriptions of Monte Carlo mathematics
for Boltzmann transport, such as the textbooks by Spanier and Gelbard [1] and Lux and Koblinger [2].
Both texts present the collision density equation, the Fredholm integral equation of the second kind, and
the Neumann series expansion, which the authors use in their analysis of multi-collision Monte Carlo. Our
presentation is simplified by the restriction that the Monte Carlo particles can collide no more than once,
though we do not impose any limit on the number of collisions undergone by physical particles. We achieve
this by handling the physics of multiple collisions using source iteration, which lags the scattering source
in order to avoid simulating scattering events in the Monte Carlo particle histories. Lagging the scattering
source is uncommon in Monte Carlo methods but is essential for deterministic methods, where source
iteration avoids forming and storing the transport operator [3].

The theorem that we prove relates the variance defined in eq. (1) to an asymptotic analysis parameter
which becomes infinitesimally small in an important physical regime that arises in radiative transfer. We
describe the regime in section 2, as well as some background information on the linear Boltzmann transport
equation that we consider, before ending the section with a statement of the theorem. In section 3, we
prove the theorem and discuss some limitations of the proof. In section 4, we provide an example of how
the theorem can be applied to convert a method with a variance that limits to infinity into one that limits
to zero. This resulted in an improvement in the uncertainty of a Monte Carlo estimator of the angle
integrated intensity by a factor of about 500 for a proxy problem from radiative transfer that contains both
optically-thick and optically-thin material. We conclude with a summary in section 5.

2. Statement of the Theorem

A statement of the theorem requires some background information on the Boltzmann transport problem
under consideration. We provide this background information first, before finishing this section with the
statement of the theorem. The Boltzmann transport problem that we consider is,

Ω · ∇ψ + σtψ = Q , (2a)

where Ω ∈ R3 is the unit direction vector, ψ is the radiation intensity, σt is the total material opacity, and
Q is the total source function. Equation (2a) is subject to an inflow boundary condition, which defines the
radiation intensity on the domain boundary in the hemisphere of directions that point into the domain at a
given location on the domain boundary surface,

ψ(x,Ω) = ψinc(x,Ω) , x ∈ ∂D and Ω · n < 0 , (2b)
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where x ∈ R3 is the spatial position coordinate, ψinc is the inflow source function, ∂D is the domain
boundary, and n is the outward facing unit normal vector on the domain boundary surface. To model a
problem in which photons are scattered and emitted by electronic interactions with the material, we could
define Q to be,

Q =
σs
4π

∫
S2
ψ dΩ′ + q , (3)

where σs is the scattering opacity, S2 is the unit sphere, and q is an arbitrary source function with which
to account for other ways that photons may enter phase space, such as photon emission from electronic
de-excitations in the material.

A common approach for the Monte Carlo simulation of eq. (2a) with Q defined by eq. (3) involves
simulating scattering events. In this approach, when a simulation particle undergoes a collision identified
as a scattering event, it emerges with a new direction and a new frequency, both of which are chosen by
pseudo-random sampling of the appropriate distributions. Multiple collisions can occur because scattering
events do not terminate the particle history.

An alternative approach is to incorporate the contribution of the scattering source in the weight of the
simulation particles. This necessitates an iteration to compute successive approximations of the integral in
eq. (3), but it removes the possibility of multiple collisions. Without scattering events, simulation particles
can only have at most one collision: a history with a single collision corresponds to a particle that was
absorbed in the domain, and a history with no collisions corresponds to a particle that leaked through a
vacuum boundary surface. The approach without scattering events is the one that we consider. Additionally,
we choose to disregard frequency dependence as well as time dependence in the Boltzmann transport problem
that we consider, hence why we write ψ = ψ(x,Ω) instead of ψ = ψ(x,Ω, ν, t).

The limiting case corresponding to the asymptotic analysis that we apply is called the thick diffusion
limit (TDL) [4]. It is an optically-thick, highly-scattering transport regime characterized by an asymptotic
analysis parameter ϵ ∈ (0, 1]. The limit ϵ → 0, along with the following scalings of the transport problem
data, define the TDL,

σt ← σt/ϵ , (4a)

σa ← σaϵ , (4b)

q ← qϵ , (4c)

where σa = σt − σs is the absorption opacity. Thus, σs is O(1/ϵ) because σs ← σt/ϵ − σaϵ and 1/ϵ ≫ ϵ
when ϵ→ 0. We can now state the theorem which connects the variance of Monte Carlo estimators for the
transport eq. (2a) to the TDL parameter ϵ. The theorem is as follows:

Theorem 1. Let Q be the total source function of a transport problem with the following form,

Ω · ∇ψ + σtψ = Q ,

subject to the inflow boundary condition,

ψ(x,Ω) = ψinc(x,Ω) , x ∈ ∂D and Ω · n < 0 .

Let Var[·] be the variance of an estimator for some quantity in a weighted Monte Carlo particle simulation
of this transport problem, such as the angle integrated intensity, and let ϵ be the thick diffusion scaling limit
(TDL) parameter. Then Var[·] is,

O

(
max

{
order(Q)2, order(ψinc)

2
}
ϵ

)
,

where order(Q) and order(ψinc) are the powers of ϵ which define the leading order term in the TDL scaling
of Q and ψinc, respectively.

3



3. Proof of the Theorem

Before presenting the proof, we provide an outline of the required steps. The proof we present pertains
to a specific estimator and physical quantity—namely, the path length estimator of the angle integrated
intensity. We denote this quantity as ϕ̂. After providing the outline, we present the proof. After the proof,
we describe how to generalize it to accommodate a different estimator, such as a collision estimator or a
surface crossing estimator, or a different quantity, such as the first angular moment or the second angular
moment of the radiation intensity.

The outline of the proof is:

3.1 Derive the expectation for the Monte Carlo estimator ϕ̂ by completing the following substeps:

3.1.1 Formally integrate the characteristic equation for eq. (2a) subject to the boundary condition
eq. (2b) over all directions and over the volume enclosed by a single mesh element,

3.1.2 Estimate the integral using Monte Carlo:

– Change variables such that s = 0 defines a point on ∂D instead of D,
– Define sampling procedures for the volume and boundary sources by defining random vari-
ables, a joint probability density function, and a function of the random variables such that
the expectation of the function is the integral that we want to compute,

3.2 Evaluate eq. (1) for Var[f + g], where f and g are the functions of random variables which define the

expectations that ϕ̂ approximates for the volume source and boundary source, respectively. Finally,
simplify the expression by applying the TDL scaling eqs. (4a) to (4c) to arrive at the function of Q,
ψinc, and ϵ listed in the statement of the theorem.

The proof is as follows:

Proof. This is the proof of theorem 1, which is divided into the parts described above.

3.1. Derive the expectation for the MC estimator ϕ̂

We begin by deriving the expectation for the MC estimator ϕ̂. The first step in this process is to
formally integrate the characteristic equation over all directions and over the volume enclosed by a single
mesh element.

3.1.1. Formally integrate the characteristic equation

The characteristic equation for eq. (2a) subject to the boundary condition given by eq. (2b) is,

ψ(r,Ω) = e−
∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) +

∫ s0

0

e−
∫ s
0
σt(r−ηΩ) dηQ(r − sΩ,Ω) ds , (5)

where we changed notation for the spatial coordinate from x to r − sΩ, the parameter s is the distance
along the characteristic, and s0 is the distance to the domain boundary in the −Ω direction. To understand
eq. (5), imagine placing a detector at the phase-space point (r,Ω), shown as the black dot at r in fig. 1. The
first term in eq. (5) represents particles emitted from the boundary ∂D in direction Ω and exponentially
attenuated before reaching the detector, while the second term represents particles emitted along s0 with
direction Ω and similarly attenuated.

Integrate eq. (5) over the unit sphere, impose a mesh, and represent the quantity described by the angular
integral as a piecewise constant function that is single-valued on each mesh element by averaging the angular
integral over an arbitrary element K,

1

vol(K)

∫
K

∫
S2
ψ(r,Ω) dΩdr =

1

vol(K)

∫
K

∫
S2
e−

∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) dΩdr

+
1

vol(K)

∫
K

∫
S2

∫ s0

0

e−
∫ s
0
σt(r−ηΩ) dηQ(r − sΩ,Ω) dsdΩdr . (6)
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Equation (6) is an integral equation for the classic piecewise constant Monte Carlo estimator of the angle
integrated intensity. The left-hand side of eq. (6) can be approximated using Monte Carlo integration. If
we knew ψ, then the Monte Carlo approximation of eq. (6) could be written as,

1

vol(K)

∫
K

∫
S2
ψ(r,Ω) dΩdr ≈ 4π

N

N∑
n=1

ψ(r(n),Ω(n)) , (7)

where r(n) and Ω(n) are random variates of uniform independent and identically distributed (iid) random
variables in space and angle, respectively. We do not know ψ, so we use the right-hand side of eq. (6) to
compute the sum in eq. (7).

3.1.2. Estimate the integral using Monte Carlo

In this part of the proof, we first change variables such that s = 0 defines a point on ∂D instead of D,
then we define sampling procedures for the volume and boundary sources by defining random variables, a
joint probability density function, and a function of the random variables such that the expectation of the
function is the integral that we want to compute.

Consider the change of variables,

r′ = r − sΩ, Ω′ = Ω, s′ = s . (8)

Let S ∼ exponential(σt(r
′ + sΩ)) be a random variable representing the distance traveled by a MC photon

originating from the point r′ and traveling in the direction Ω before it collides with an electron in the
matter. We refer to s as the “path length”. The probability density function for the path length s given a
fixed position r′ and direction Ω is,

pσt(s) = σt(r
′ + sΩ)e−

∫ s
0
σt(r

′+ηΩ) dη . (9)

Using the notation (· ; K) to emphasize the presence of element K, define the distance traveled in K as,

τ(r′,Ω, s;K) =


0 s < s1(r

′,Ω;K) ,

s− s1(r′,Ω;K) s1(r
′,Ω;K) ≤ s ≤ s2(r′,Ω;K) ,

s2(r
′,Ω;K)− s1(r′,Ω;K) s2(r

′,Ω;K) > s ,

(10a)

where s1 and s2 are the distances to the entry point and exit points of K along Ω, respectively,

s1(r
′,Ω;K) = min{s | r′ + sΩ ∈ ∂K} , (10b)

s2(r
′,Ω;K) = max{s | r′ + sΩ ∈ ∂K} . (10c)

Figure 2 shows r′ along with three possible absorption locations corresponding to three values of τ . Observe
that r′ ∈ ∂D. The final step in this change of variables r → r′ is to relate the volume elements dr and dr′.

Let n(r′) denote the surface normal vector at r′ ∈ ∂D. Consider the volume, made by an infinitesimal
area element dA on the boundary ∂D extruded by distance ds in direction Ω,

{r′ + sΩ | r′ ∈ dA ⊂ ∂D, s ∈ ŝ+ ds} . (11)

In two spatial dimensions, this volume is a function of the area of the parallelogram in span{n,n⊥}, where
n⊥ is the unit vector perpendicular to the surface normal n, formed from n · n⊥ = 0 and shown in fig. 3.
The volume is,

ds dA |n⊥ ×Ω| = ds dA

∣∣∣∣det( n2 Ω1

−n1 Ω2

)∣∣∣∣ , (12)

where the subscripts denote the entry number of the value in the corresponding vector. Equation (12)
simplifies to ds dA |Ω · n|. Also note that,∫ s

0

σt(r − ηΩ) dη =

∫ s

0

σt(r
′ + (s− η)Ω) dη . (13)
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Letting η̃ = s− η, so dη̃ = −dη, we have,∫ s

0

σt(r
′ + (s− η)Ω) dη = −

∫ 0

s

σt(r
′ + η̃Ω) dη̃

=

∫ s

0

σt(r
′ + ηΩ) dη . (14)

Therefore, the integrand which is expressed in r coordinates,

e−
∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) dr (15)

can be equivalently represented as an integrand in r′ coordinates,

e−
∫ s
0
σt(r

′+ηΩ) dηψinc(r
′,Ω) |Ω · n|dsdA . (16)

The change of variables r → r′ generates a factor of |Ω · n| in the boundary surface integral because the
infinitesimal volume element dr is equal to |Ω · n|dsdA in r′ coordinates.

We proceed by considering the contribution of the volume source Q and the boundary source ψinc to ϕ̂
separately. First, the volume source.

Volume source contribution to ϕ̂

LetR ∼ U(D), ω ∼ U(S2), and S ∼ exponential(σt(R+sω)) be random variables representing the initial
position, direction, and distance traveled by a MC photon from the volume source, respectively. Define the
joint probability density function of R,ω, and S as,

p(r′,Ω, s) =
1

vol(D)
1

4π
pσt(r

′,Ω, s) , (17)

with domain A = D × S2 × [0,∞) and pσt(r
′,Ω, s) defined in eq. (9). Define a function of the random

variables R,ω, and S representing the contribution of the volume source Q(r′,Ω) to the angle integrated
intensity ϕ,

f(R,ω, S) = 4π vol(D)Q(r′,Ω) τ(r′,Ω, s;K) . (18)

If ψinc = 0 then eq. (6) can now be written in terms of the expectation of f(R,ω, S),

1

vol(K)
E
[
f(R,ω, S)

]
=

1

vol(K)

∫
D

∫
S2

∫ ∞

0

f(r′,Ω, s) p(r′,Ω, s) dsdΩdr′ , (19)

where p(r′,Ω, s) is the joint probability density function defined in eq. (17). The Monte Carlo approximation
of the expectation in eq. (19) is,

E
[
f(R,ω, S)

]
≈ 1

N

N∑
n=1

f
(
r(n),Ω(n), s(n)

)
, (20)

where
(
r(n),Ω(n), s(n)

)
, n = 1, . . . , N, are random variates of the random variables R,ω, and S. Substitut-

ing eq. (18) into eq. (20) gives,

1

N

N∑
n=1

f
(
r(n),Ω(n), s(n)

)
=

4π vol(D)
N

N∑
n=1

Q
(
r(n),Ω(n)

)
τ
(
r(n),Ω(n), s(n);K

)
. (21)

Equation (21) is the contribution of the volume source to the ϕ̂ estimator. The sum in eq. (21) is over all N
particles sourced in the volume D. We can rewrite eq. (21) as a sum over all volume source particle paths
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x

y

D
∂D

r

Ω

s0

Figure 1: Distance to domain boundary s0(r).

x

y

D
∂D

r′

s2

K

∂K

s1

Figure 2: Distance to element entry s1(r′) and exit s2(r′) and three possible absorption locations marked by X’s along the
path r′ + sΩ. Here, τ = 0 for the X closest to r′, τ = s− s1 for the middle X, and τ = s2 − s1 for the far X.

D
∂D

r′

r
Ω

s

(a) Change of variables.

D
∂D

r′

r

dsΩ

dAn⊥

dsΩ

dAn⊥

(b) Volume scaling.

Figure 3: The change of variables r → r′ generates a factor of |Ω·n| in the boundary surface integral because dr = |Ω·n| ds dA.
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traversed in some element K. Assume that volume source particle n traversed path i in element K and
define its weight as,

wi =
4π vol(D)

N
Q
(
r(n),Ω(n)

)
. (22)

Define the length of path i as,

di = τ
(
r(n),Ω(n), s(n);K

)
. (23)

Equation (21) can now be rewritten as the sum over paths traversed by volume source particles in K,∑
i=1

widi . (24)

Multiplying eq. (24) by the inverse volume in front of the expectation in eq. (19) gives us our final result

for the contribution of the volume source to the estimator ϕ̂ on K,

1

vol(K)

∑
i=1

widi . (25)

Next, we consider the contribution of the boundary source ψinc to ϕ̂.

Boundary source contribution to ϕ̂

Let Rb ∼ U(∂D), ωh ∼ U(S2h), and Sb ∼ exponential(σt(Rb + sωh)) be random variables representing the
initial position, direction, and distance traveled by a MC photon from the boundary source, respectively,
where S2h is all directions on the unit hemisphere defined by Ω ·n < 0 at x ∈ ∂D. Define the joint probability
density function of Rb,ωh, and Sb as,

ρ(r′,Ω, s) =
1

area(∂D)
1

2π
pσt(r

′,Ω, s) , (26)

with domain B = ∂D × S2h × [0,∞) and pσt
(r′,Ω, s) defined in eq. (9). Define a function g(Rb,ωh, Sb) of

the random variables Rb,ωh, and Sb which represents the contribution of the boundary source ψinc(r
′,Ω)

to the angle integrated intensity ϕ,

g(Rb,ωh, S) = 2π area(∂D)ψinc(r
′,Ω) τ(r′,Ω, s;K) . (27)

If Q = 0 then Equation (6) can now be written in terms of the expectation of g(Rb,ωh, Sb),

1

vol(K)
E
[
g(Rb,ωh, S)

]
=

1

vol(K)

∫
∂D

∫
Ω·n<0

∫ ∞

0

|Ω · n| g(r′,Ω, s) ρ(r′,Ω, s) dsdΩdA , (28)

where ρ(r′,Ω, s) is the joint probability density function defined in eq. (26). The Monte Carlo approximation
of the expectation in eq. (28) is,

E
[
g(Rb,ωh, S)

]
≈ 1

M

M∑
m=1

g
(
r
(m)
b ,Ω

(m)
h , s

(m)
b

)
, (29)

where
(
r
(m)
b ,Ω

(m)
h , s

(m)
b

)
, m = 1, . . . ,M, are random variates of the random variables Rb,ωh, and Sb.

Substituting eq. (27) into eq. (29) gives,

1

M

M∑
m=1

g
(
r
(m)
b ,Ω

(m)
h , s

(m)
b

)
=

2π area(∂D)
M

M∑
m=1

|Ω(m)
h · n|ψinc

(
r
(m)
b ,Ω

(m)
h

)
τ
(
r
(m)
b ,Ω

(m)
h , s

(m)
b ;K

)
. (30)
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Equation (30) is the contribution of the boundary source to the ϕ̂ estimator. The sum in eq. (30) is over all
M particles sourced on the surface ∂D. We can rewrite eq. (30) as a sum over all boundary source particle
paths traversed in some element K. Assume that boundary source particle m traversed path j in element
K and define its weight as,

wj =
2π area(∂D)

M
|Ω(m)

h · n|ψinc

(
r
(m)
b ,Ω

(m)
h

)
. (31)

Define the length of path j as,

dj = τ
(
r
(m)
b ,Ω

(m)
h , s

(m)
b ;K

)
. (32)

Equation (30) can now be rewritten as the sum over paths traversed by boundary source particles in K,∑
j=1

wjdj . (33)

Multiplying eq. (33) by the inverse volume in front of the expectation in eq. (28) gives us our final result

for the contribution of the boundary source to the estimator ϕ̂ on K,

1

vol(K)

∑
j=1

wjdj . (34)

The estimator ϕ̂ is the sum of eq. (25) and eq. (34).

Now that we have defined the expectation for the Monte Carlo estimator ϕ̂, we can evaluate eq. (1)

for Var[f + g], where f and g are the functions of random variables which define the expectations that ϕ̂
approximates for the volume source and boundary source, respectively.

3.2. Evaluate Var[f + g] and apply the TDL scaling

The variance of a random variable, or a function of random variables, is the expectation of the square
minus the square of the expectation, as shown in eq. (1) and rewritten here,

Var[f ] = E[f2]− (E[f ])
2
. (35)

Recall that ϕ̂ is the sum of eq. (25) and eq. (34). That is, ϕ̂ is the sum of contributions of particles originating
from both the volume source Q and the boundary source ψinc. Thus, we must compute the variance of the
sum of the functions of random variables which define the expectations,

Var[f + g] = Var[f ] + Var[g] , (36)

where we used Cov[f, g] = 0 because f and g are independent because they are functions of different
independent random variables. We proceed by considering Var[f ] and Var[g] separately. First, Var[f ].

Volume source contribution to Var[f + g]

Recalling eq. (19), which shows the expectation of f along with a volume factor, the expectation of f2

is,

E[f2] =

∫
D

∫
S2

∫ ∞

0

f2p dsdΩdr′ . (37)

Considering only the integral along the particle path, we may substitute eqs. (17) and (18) for p and f ,
respectively, into eq. (37) and simplify to get,∫ ∞

0

f2p ds = 4π vol(D)Q2

∫ ∞

0

τ2pσt
ds , (38)
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where pσt and τ are defined by eqs. (9) and (10a), respectively. In a single material problem, the rate in the
exponential probability density function is constant, and eq. (9) simplifies to,

pσt
(s) = σte

−σts . (39)

Equation (39) in the TDL is,

pσt
(s) =

σt
ϵ
e−

σt
ϵ s , (40)

where ϵ is the TDL scaling parameter. Now consider just the integral in eq. (38) without its coefficient.
Substituting eq. (40) for pσt

and eq. (10a) for τ into the integral, and splitting the integral over s ∈ [0,∞)
to three integrals over [0, s1), [s1, s2), and [s2,∞) gives,∫ ∞

0

τ2pσt
ds =

∫ s2

s1

(s− s1)2
σt
ϵ
e−

σt
ϵ s ds+ (s2 − s1)2

∫ ∞

s2

σt
ϵ
e−

σt
ϵ s ds . (41)

The second integral in eq. (41) is,

(s2 − s1)2
∫ ∞

s2

σt
ϵ
e−

σt
ϵ s ds = (s2 − s1)2e−

σt
ϵ s2 . (42)

The first integral in eq. (41) may be computed using integration by parts twice. The result is,

∫ s2

s1

(s− s1)2
σt
ϵ
e−

σt
ϵ s ds = 2

(
ϵ

σt

)2

e−
σt
ϵ s1

+

{
−(s2 − s1)2 + 2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ s2 . (43)

We can now write eq. (41) as the sum of eqs. (42) and (43),∫ ∞

0

τ2pσt ds = 2

(
ϵ

σt

)2

e−
σt
ϵ s1 +

{
2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ s2 . (44)

Define a new random variable ζ
(1)
K equal to eq. (44),

ζ
(1)
K = 2

(
ϵ

σt

)2

e−
σt
ϵ s1 +

{
2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ s2 . (45)

We can label the terms and coefficients in eq. (45) to show the order of each term and coefficient in the
TDL. Recall that in the TDL, ϵp < ϵq for p > q, because ϵ ∈ (0, 1]. The terms in eq. (45) scale as,

2

(
ϵ

σt

)2

︸ ︷︷ ︸
O(ϵ2)

e−
σt
ϵ s1︸ ︷︷ ︸

O(1)︸ ︷︷ ︸
O(ϵ2)

+

2s1

(
ϵ

σt

)
︸ ︷︷ ︸

O(ϵ)

− 2s2

(
ϵ

σt

)
︸ ︷︷ ︸

O(ϵ)

− 2

(
ϵ

σt

)2

︸ ︷︷ ︸
O(ϵ2)

 e−
σt
ϵ s2︸ ︷︷ ︸

O(1)︸ ︷︷ ︸
O(ϵ)

, (46)

where the exponentials are bounded by 1 because e−x ∈ (0, 1] for x ≥ 0. Thus, ζ
(1)
K is O(ϵ).

Rewriting eq. (37) using eq. (38) with eq. (45) substituted, and then simplifying gives,

E[f2] = 4π vol(D)
∫
D

∫
S2
Q2 ζ

(1)
K dΩdr′ . (47)

10



We can label the terms in eq. (47) using the order of ζ
(1)
K determined in eq. (46) as follows,

4π vol(D)︸ ︷︷ ︸
O(1)

∫
D

∫
S2

Q2︸︷︷︸
O(order(Q)2)

ζ
(1)
K︸︷︷︸
O(ϵ)

dΩdr′

︸ ︷︷ ︸
O(order(Q)2 ϵ)︸ ︷︷ ︸

O(order(Q)2 ϵ)

. (48)

Thus, E[f2] is O(order(Q)2 ϵ), where order(Q) is the power of ϵ which defines the leading order term in the
TDL scaling of Q

As shown by eq. (35), the variance is the difference of two terms, of which eq. (47) is only the first. The
second is (E[f ])2, for which we must consider E[f ],

E[f ] =

∫
D

∫
S2

∫ ∞

0

fpdsdΩdr′ . (49)

The integral along the particle path is, ∫ ∞

0

fpds = Q

∫ ∞

0

τpσt
ds . (50)

Substituting eq. (40) for pσt
and eq. (10a) for τ into the integral and splitting the integral into three as in

eq. (41) gives, ∫ ∞

0

τpσt
ds =

∫ s2

s1

(s− s1)
σt
ϵ
e−

σt
ϵ s ds+ (s2 − s1)

∫ ∞

s2

σt
ϵ
e−

σt
ϵ s ds . (51)

The second integral in eq. (51) is,

(s2 − s1)
∫ ∞

s2

σt
ϵ
e−

σt
ϵ s ds = (s2 − s1)e−

σt
ϵ s2 . (52)

The first integral in eq. (51) may be computed using integration by parts. The result is,∫ s2

s1

(s− s1)
σt
ϵ
e−

σt
ϵ s ds =

(
s1 − s2 −

ϵ

σt

)
e−

σt
ϵ s2 +

ϵ

σt
e−

σt
ϵ s1 . (53)

We can now rewrite eq. (51) as the sum of eqs. (52) and (53),∫ ∞

0

τpσt
ds =

ϵ

σt

(
e−

σt
ϵ s1 − e−σt

ϵ s2
)
. (54)

Define a new random variable ζ
(0)
K equal to eq. (54),

ζ
(0)
K =

ϵ

σt

(
e−

σt
ϵ s1 − e−σt

ϵ s2
)
. (55)

We can label the terms and coefficients in eq. (55) to show the order of each term and coefficient. The terms
in eq. (55) scale as,

ϵ

σt︸︷︷︸
O(ϵ)

e−σt
ϵ s1︸ ︷︷ ︸

O(1)

− e−σt
ϵ s2︸ ︷︷ ︸

O(1)


︸ ︷︷ ︸

O(ϵ)

. (56)

Thus, ζ
(0)
K is O(ϵ). Finally, we can rewrite eq. (49) using eq. (50) with eq. (55) substituted. After simplifying,

the result is,

E[f ] =

∫
D

∫
S2
Qζ

(0)
K dΩdr′ . (57)
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We can label the terms in eq. (57) using the order of ζ
(0)
K determined in eq. (56) as follows,∫

D

∫
S2

Q︸︷︷︸
O(order(Q))

ζ
(0)
K︸︷︷︸
O(ϵ)

dΩdr′

︸ ︷︷ ︸
O(order(Q) ϵ)

. (58)

Thus, E[f ] is O(order(Q) ϵ). We can now label the terms in the variance eq. (35), which scales as,

Var[f ] = E[f2]︸ ︷︷ ︸
O(order(Q)2 ϵ)

− (E[f ])
2︸ ︷︷ ︸

O(order(Q)2 ϵ2)︸ ︷︷ ︸
O(order(Q)2 ϵ)

. (59)

We now have the first term in eq. (36). For the second, Var[g], we must consider the boundary source.

Boundary source contribution to Var[f + g]

Recall eq. (28), which shows the expectation of g along with a volume factor. The expectation of g2 is,

E[g2] =

∫
∂D

∫
Ω·n<0

∫ ∞

0

|Ω · n| g2ρdsdΩdA , (60)

where ρ and g are defined by eqs. (26) and (27), respectively. If we apply the same procedure that we used
to determine the order of E[f2] to eq. (60), we find that E[g2] is O(order(ψinc)

2 ϵ). Similarly, applying the
procedure that we used to determine the order of E[f ] to E[g], we find that E[g] is O(order(ψinc) ϵ). This
means that Var[g] scales as,

Var[g] = E[g2]︸ ︷︷ ︸
O(order(ψinc)2 ϵ)

− (E[g])
2︸ ︷︷ ︸

O(order(ψinc)2 ϵ2)︸ ︷︷ ︸
O(order(ψinc)2 ϵ)

. (61)

We now have both terms in eq. (36).
Substituting eqs. (59) and (61) into eq. (36) gives the final result,

Var[f + g] = Var[f ]︸ ︷︷ ︸
O(order(Q)2 ϵ)

+ Var[g]︸ ︷︷ ︸
O(order(ψinc)2 ϵ)︸ ︷︷ ︸

O

(
max

{
order(Q)2, order(ψinc)2

}
ϵ

)
. (62)

Thus, the path length estimator of the angle integrate intensity ϕ̂ has a variance which is the larger of
O(order(Q)2 ϵ) and O(order(ψinc)

2 ϵ) in the TDL.

Our proof demonstrates that Var[ϕ̂] is the larger of O(order(Q)2 ϵ) and O(order(ψinc)
2 ϵ) in the TDL.

However, it is possible to prove theorem 1 for a different estimator—such as a collision estimator or a surface
crossing estimator—or a different quantity, such as the first angular moment or the second angular moment
of the radiation intensity, by modifying the steps involving the derivation of the expectation. In our case,
we derived the expectation for the path length estimator of the angle integrated intensity ϕ̂, and thus our
proof specifically establishes that Var[ϕ̂] is the larger of O(order(Q)2 ϵ) and O(order(ψinc)

2 ϵ) in the TDL.
If there is no inflow, then the result simplifies to O(order(Q)2 ϵ).

One limitation of our proof is the assumption that only a single material is present. This assumption
circumvents the complications associated with the spatial variation of material properties, such as the total
opacity σt. One example of a simplification that arises due to this assumption is that the non-constant rate
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exponential probability distribution function eq. (9) is replaced by the constant rate exponential probability
distribution function eq. (39). Another limitation is the assumption that simulation particles can have no
more than one collision.

The application that we highlight in the next section is a result that was obtained because of theorem 1.

4. Application of the Theorem

Hybrid Second Moment (HSM) is a hybrid Monte Carlo-deterministic method for solving eq. (2a) with
Q defined by eq. (3) subject to the inflow boundary condition eq. (2b) without simulating scattering events
[5]. Instead, the contribution of the scattering source is incorporated into the weight of the simulation
particles. This necessitates an iteration to compute successive approximations of the integral in eq. (3).
Instead of using the angle integrated intensity estimator to approximate the integral, the authors solve a
moment system, then use the solution in place of the integral.

The Monte Carlo solve in HSM estimates the angle integrated intensity associated with the equation,

Ω · ∇ψ + σtψ =
σs
4π
φ+ q , (63)

whereΩ, ψ, σt, σs, and q were defined in section 2, and φ is the solution of the moment system. Equation (63)
is subject to the inflow boundary condition eq. (2b). Thus, the total source function Q for eq. (63) is,

Q =
σs
4π
φ+ q . (64)

We can use theorem 1 to predict how HSM will perform in the TDL. Applying the TDL scaling eqs. (4a)
to (4c) to eq. (64) shows that the terms in Q scale as,

Q =
σs
4π
φ︸︷︷︸

O(ϵ−1)

+ q︸︷︷︸
O(ϵ)

. (65)

Thus, Q for eq. (63) is O(1/ϵ), because 1/ϵ ≫ ϵ. By theorem 1, Var[·] is O(1/ϵ) for estimators computed
in a weighted Monte Carlo particle simulation of the transport problem defined by eq. (63) subject to the
boundary condition eq. (2b), assuming that ψinc is O(1) in the TDL. The authors fix the noise issue by
fixing the undesirable dependence of the variance on ϵ. They do this by substituting ψ = φ̄/(4π) + ψ̃ into
eq. (63), where φ̄ is an arbitrary function which they define to satisfy certain properties, including that
φ− φ̄ is O(1/σt). The result is,

Ω · ∇ψ̃ + σtψ̃ =
σt
4π

(φ− φ̄)− 1

4π
(σaφ+Ω · ∇φ̄) + q . (66a)

They substitute ψ = φ̄/(4π) + ψ̃ into eq. (2b), which gives a new inflow boundary condition,

ψ̃(x,Ω) = ψinc(x,Ω)− 1

4π
φ̄(x) , x ∈ ∂D and Ω · n < 0 . (66b)

We can apply theorem 1 once more, this time to the new transport problem defined by eqs. (66a) and (66b).
Consider the total source function in eq. (66a). The terms scale as,

Q =
σt
4π

(φ− φ̄)︸ ︷︷ ︸
O(1/σt)︸ ︷︷ ︸
O(1)

− 1

4π
(σaφ︸︷︷︸
O(ϵ)

+Ω · ∇φ̄︸ ︷︷ ︸
O(1)

)

︸ ︷︷ ︸
O(1)

+ q︸︷︷︸
O(ϵ)

.

︸ ︷︷ ︸
O(1)

(67)
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The terms in the new inflow boundary condition eq. (66b) scale as,

ψ̃(x,Ω) = ψinc(x,Ω)︸ ︷︷ ︸
O(1)

− 1

4π
φ(x)︸ ︷︷ ︸
O(1)

, (68)

where we have assumed once more that ψinc is O(1) in the TDL. By theorem 1, the variance of the path
length estimator for the angle integrated intensity for eq. (66a) subject to the boundary condition eq. (66b)
is O(ϵ).

Thus, by using theorem 1, the authors of HSM were able to take a method which has a variance that
limits to infinity in the TDL, and create a method which has a variance that limits to zero in the TDL. The
variance reduction procedure guided by theorem 1 allowed the HSM authors to make HSM useful, instead
of useless. Figure 4 shows the result of solving a proxy problem from radiative transfer using HSM, both
with and without variance reduction, with 16 million particles in each case. Variance reduction makes the
noise nearly imperceptible.

(a) (b)

Figure 4: Numerical solution before (a) and after (b) applying variance reduction using theorem 1.

By “imperceptible”, we simply mean that the pseudocolor plot in fig. 4b appears completely smooth.
The pseudocolor plot in fig. 4a exhibits substantial speckling, which is a result of the noise issue: relatively
long paths traversed by relatively high-weight particles create bright streaks in the plot. This high-frequency
(short-wavelength) spatial variation of the numerical solution is unphysical.

The authors found that they needed approximately 500 times more particles (8 billion instead of 16
million) to achieve imperceptible noise without variance reduction. Details of the radiative transfer proxy
problem problem may be found in [5].

The authors of the same publication also ran single-zone, single-material calculations in which they
gradually increased the optical-thickness of the material by decreasing the TDL parameter ϵ, and estimated
the variance of the angle integrated intensity. Figure 5 shows a plot of their results, reproduced with their
permission. They observed the hypothesized variances, which limit to infinity and to zero as shown in
fig. 5 (a) and (b), respectively. Details of the gradually-increased optical-thickness problem, which provided
empirical evidence in support of the O(1/ϵ) and O(ϵ) functional form of the analytic variances, may be
found in [5].

5. Conclusions

We presented a proof of a theorem describing the variance of Monte Carlo estimators in an important
asymptotic regime characterized by an optically-thick, highly scattering material. Our proof is limited to
the path length estimator for the angle integrated intensity in a single material for simulation particles
that have no more than one collision, but we suggested ways in which one could alleviate some of these
limitations. The authors of a radiative transfer method used the theorem to develop a variance reduction
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(a) Variance of HSM estimator for eq. (63). (b) Variance of HSM estimator for eq. (66a).

Figure 5: Hybrid Second Moment estimator variance before variance reduction (a) and after variance reduction (b). Reproduced
with permission from the authors of [5].

technique that enabled a Monte Carlo solution estimator to achieve imperceptible noise with approximately
500 times fewer simulation particles than would be required without variance reduction.
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