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Abstract

We present a hybrid method that combines Monte Carlo with deterministic finite element methods to solve
a linear Boltzmann transport equation. Our hybrid method runs orders of magnitude faster than Monte
Carlo, without sacrificing accuracy, for a proxy problem from radiative transfer that contains both optically-
thick and optically-thin material. We believe that this is the first demonstration of a hybrid Second Moment
Method in more than one spatial dimension, the first to consider more than one material, and the first to use
variance reduction. Our variance reduction approach arises from an asymptotic analysis in which we show
that the magnitude of the scattering source grows without bound. We transform the problem to compute the
deviation of the radiation intensity from isotropy. The magnitude of the source in the transformed problem is
bounded, and the quality of the hybrid method solution is dramatically improved by a substantial reduction
in the variance.

Keywords: Second Moment Method, Monte Carlo, Variance Reduction

1. Introduction

The Second Moment Method (SMM) is an iterative method which solves a linear Boltzmann transport
equation and a system of linear moment equations every cycle [1]. The transport equation and the moment
equations are coupled through source terms. The linearity and source coupling of SMM contrasts with the
non-linearity and operator coupling of Quasidiffusion, or Variable Eddington Factor (VEF) [2]. SMM and
VEF converge quickly in the optically-thick, highly-scattering transport regime known as the thick diffusion
limit (TDL) [3]. Source iteration (SI), which lags the scattering source in order to avoid forming the transport
operator, converges arbitrarily slowly in the TDL. Methods such as diffusion synthetic acceleration (DSA)
accelerate SI convergence [4]. SMM and VEF are similar to DSA, in the sense that all three methods
converge quickly, but there are some important differences. For example, the low-order problem must be
“consistent” with the high-order problem for DSA to always converge quickly [5].

Our hybrid method lags the scattering source, not to avoid forming the transport operator, but to avoid
simulating scattering events in the Monte Carlo particle histories. Simulating these events can dominate the
calculation runtime in the TDL. However, just like ST with deterministic methods, Monte Carlo SI converges
arbitrarily slowly in the TDL. We fix this problem by creating a hybrid SMM that converges quickly. We use
SMM instead of DSA because our use of Monte Carlo to solve the high-order problem makes it unclear how
we would satisfy the consistency requirement. We chose SMM over VEF because of statistical variation—
hereafter referred to as noise—which could be more complicated to manage when it appears in the operator,
as in hybrid VEF, rather than in the source, as in hybrid SMM. We use Monte Carlo because it allows the
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dimensions of the high-order problem to remain continuous, thereby avoiding discretization errors such as
the unphysical starburst patterns known as “ray effects” that are caused by angular under-resolution.

Using Monte Carlo (MC) introduces noise, which can diminish the accuracy of MC estimators to the
extent that the estimates become worthless. Hybrid methods may amplify this noise through differentiation.
We avoid noise amplification by solving the first-order form of the low-order problem, which involves only a
single spatial derivative acting on the noisy source term, and we use integration by parts with a finite element
method to transfer the derivative from the noisy source term to a test function in the weak formulation.
Although the interior face terms in the weak form could be calculated using surface estimators, we instead
use volumetric estimators and apply finite element interpolation to evaluate these terms in the weak form.
Numerical evidence suggests that solving the weak, first-order form without surface estimators is sufficient
for avoiding noise amplification.

However, we found that simply avoiding noise amplification is not sufficient to provide an efficient hybrid
alternative to Monte Carlo for calculations in the previously mentioned TDL regime. To address this issue,
we perform an asymptotic analysis to derive an expression relating the variance of the MC estimators in our
hybrid method to €, the parameter characterizing the TDL. Our analysis demonstrates that, without variance
reduction designed specifically to alleviate the undesirable dependency of the variance on the parameter e,
the solution of any Monte Carlo source iteration method will be arbitrarily noisy in the TDL. Therefore,
we develop and implement a variance reduction technique that transforms the high-order problem into one
that requires computing the deviation of the radiation intensity from isotropy. In the transformed problem,
the variance of the MC estimators limits to zero, rather than infinity, in the TDL.

The transformed problem resembles the difference formulation, which considers the deviation of the
intensity from the Planck distribution [6]. As a result, the material emission source is replaced by the
space-time derivative of the Planck function. The spatial gradient term in the inhomogeneous source of
the difference formulation can be addressed by sourcing MC particles on the interior faces of the mesh
[7]. A notable feature of our hybrid method is that we do not use interior face sources, despite a similar
gradient appearing in our inhomogeneous source term. Although this approach is possible within our hybrid
method—and would require sourcing only on the interior mesh faces that coincide with material interfaces—
we instead apply finite element differentiation to compute a volumetric source which we sample instead of
face sources. Our technique is an extension of the difference formulation to iterative Monte Carlo, and the
resulting equations in the high-order problem resemble those in the generalized difference formulation [8].

An example of an issue that our hybrid method could fix, were it to be extended to nonlinear transport,
is the very long runtimes of Monte Carlo calculations which solve the thermal radiative transfer (TRT)
equations using Fleck & Cummings’ “implicit Monte Carlo” (IMC) linearization [9]. The IMC linearization
produces a linear transport equation with an effective scattering source which causes arbitrarily long IMC
photon histories in the TDL, leading to arbitrarily long IMC calculation runtimes. Fleck & Canfield’s
Random Walk (RW) algorithm can reduce the runtime by replacing many steps with a single step in the
histories of IMC photons which satisfy certain properties [10]. The equation that we solve is linear, unlike
TRT, but it still reproduces the long IMC runtime issue.

Runtime improvements exceeding that of RW can be achieved using more recently developed IMC ac-
celeration algorithms, such as implicit Monte Carlo Diffusion (IMD) [11, 12] or discrete diffusion Monte
Carlo (DDMC) [13, 14]. IMD and DDMC are very effective, but not perfect. Both algorithms use diffusion
approximations, require phase-space partitioning, and have not been extended to meshes with reentrant
elements. In contrast, our method does not use diffusion, does not partition phase-space, and does not have
issues with reentrant elements. Reentrant elements can arise in radiation-hydrodynamics calculations when
the Lagrangian hydrodynamic frame is employed—for example, when a mesh of squares is distorted by fluid
flow, resulting in a quadrilateral mesh that contains darts, which are elements shaped like arrow heads.

Although we suggest thermal radiative transfer as an application of our method, we make no assumptions
about the type of particle in the simulation—our method is applicable as long as the linear transport equation
under consideration is a valid physical model for the particle type. Neutrons, like photons, can be simulated
in accordance with a linear transport equation. One example of a problem that our hybrid method could
address in neutronics calculations is slow Monte Carlo neutron transport simulation runtimes resulting
from the long histories of MC neutrons traversing optically thick, highly scattering materials, such as the
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moderator surrounding the core in a nuclear power reactor.

SMM and VEF algorithms typically use deterministic methods to solve both the high-order transport
problem and the low-order moment system. We use the term “hybrid” because our method employs Monte
Carlo to solve the high-order problem. We believe that our method is the first demonstration of a hybrid
SMM in more than one spatial dimension, the first to consider more than one material, and the first to use
variance reduction. However, a few similar hybrid methods exist. These can be grouped into two categories:
those that interrupt a Monte Carlo calculation one or more times to solve a moment system without actually
iterating, and those that iterate to converge quantities such as a source term or the Eddington tensor.

The “interrupt” category of similar hybrid methods contains what may be the earliest example of a hybrid
SMM or VEF method: Cooper & Larsen’s method to compute weight windows to reduce the variance of
a Monte Carlo calculation [15]. By interrupting their MC calculation to solve a VEF system, then using
the VEF system solution to set weight windows before resuming their MC calculation, Cooper & Larsen
reduced the variance of their MC solution, while also improving an important Monte Carlo figure of merit.
More recently, Novellino & Anistratov computed MC solutions for a transport problem, followed by SMM
and VEF system solutions, and found that the moment system solutions were sometimes more accurate
than the MC solution [16].

The category of similar hybrid methods which iterate is larger than the “interrupt” category. Willert
et al. replaced the deterministic transport solve in a method that uses nonlinear diffusion acceleration
(NDA) with Jacobian-free Newton-Krylov (JFNK) to accelerate source iteration in a method called JFNK-
NDA(MC) [17]. Park et al. created a hybrid method by using Monte Carlo with the moment method that
they described in [18]. In their hybrid method, Park et al. use MC to compute consistency terms which
appear in their moment system [19]. They also use phase-space partitioning in a similar manner to IMD
and DDMC. Lam et al. linearized the TRT equations in a way that avoids effective scattering, then solved a
transport equation using Monte Carlo and a diffusion equation using a finite element method to converge a
Newton iteration [20]. Pasmann et al. used a low-discrepancy sequence instead of a pseudo-random number
sequence to improve the asymptotic order of the estimator uncertainty such that a factor of two reduction
in the uncertainty requires only twice as many particles, instead of four times as many. This enhancement
violates assumptions which allow for the contribution of the scattering and fission sources to be included
through scattering events and fission events. Pasmann et al. accounts for the contribution in the particle
weights, and re-computes the contribution every cycle of an iteration [21].

We refer to our method as hybrid second moment (HSM), and in the next section we describe HSM
without any derivations. The purpose of the section is to summarize the method before showing details,
such as derivations, which we include in subsequent sections. In addition to derivations, we provide an
analysis of the MC estimator variance in the TDL. After describing some details of our implementation, we
then show numerical results which demonstrate that HSM is orders of magnitude faster than Monte Carlo,
without sacrificing accuracy, for a proxy problem from radiative transfer that contains both optically-thick
and optically-thin material. We conclude with a summary and suggestions for future work.

2. Hybrid Second Moment Algorithm

A steady-state, gray, linear Boltzmann transport equation may be written,
2V +ow =2 [ pa+, (1a)
47 S2

where © € S? is the unit direction vector, S? is the unit sphere, v is the radiation intensity, o; is the
total material opacity, oy is the scattering opacity, and ¢ is an arbitrary source function. Equation (1a) is
subject to an inflow boundary condition, which defines the radiation intensity on the domain boundary in
the hemisphere of directions that point into the domain at a given location on the domain boundary surface,

V(x, Q) = VYinc(x,0Q), x€0Dand N-n <0, (1b)



where x € RY™ i5 the spatial position coordinate, i, is an arbitrary inflow function, 0D is the domain
boundary, and n is the outward facing unit normal vector on the domain boundary surface. The second
moment system associated with the linear transport problem can be derived by taking angular moments of
eq. (1a). A boundary condition for the system can be derived by manipulating partial currents. The second
moment system is (see section 3 for the derivation),

V-J+o.0=Qo, xeD, (2a)

1

§V<p+0tJ:Q17V~T, xeD, (2b)
1

J-n:§<p+2Jin+,6’, x € 0D, (2c)

where J € RU™ is the vector unknown, o, = 0; — 0, is the absorption opacity, ¢ is the scalar unknown, Qg
is the zeroth angular moment of ¢, @, is the first angular moment of ¢, Ji, is a functional of ti,c, and T
and [ functionals of ¥. The functionals are,

Jin:/ ﬂ'nwincdﬂa (3)
Q-n<0
T = Q®Q¢d9—%1/ $dQ, (4)

/\ﬂ njpae—; [ vdo. (5)

where I is the identity matrix. When T and ( are zero, the system of egs. (2a) and (2b) simplifies to
the radiation diffusion approximation, and eq. (2c) simplifies to the Marshak boundary condition. For this
reason, we refer to T € RYm X dim 55 the transport correction tensor and 3 as the boundary correction factor.
While T has nine entries when dim = 3, only six are unique, because T is symmetric. Before discretization,
egs. (2a) to (2¢) are an equivalent reformulation of egs. (1a) and (1b). Thus, before discretization, the scalar
and vector unknowns in the SMM system are equal to the zeroth and first angular moments of the intensity.

The Second Moment Method uses ¢, which comes from solving the moment system, to compute the
scattering source in eq. (1la). We write this by simply replacing the angle integrated intensity in eq. (1a)
with ¢,

Q'V¢+Ut¢:%¢+Q- (6)

Solving eq. (6) along with the boundary condition eq. (1b) for ¢ allows us to compute the SMM data T and
B, which are functionals of 1. Figure 1 shows the SMM iteration. In our hybrid method, we may use Monte
Carlo without scattering events to solve the linear transport equation (left side of fig. 1) and compute the
SMM data T and S as Monte Carlo estimators. We may then solve the moment system (right side of fig. 1)
using a deterministic method, and use the solution ¢ to compute the scattering source, which we converge
in an iteration.

However, such a hybrid method would have a Monte Carlo solution estimator with an arbitrarily large
variance in the TDL. Specifically, the variance would be O(1/¢), where € € (0, 1] is the TDL parameter, and
€ — 0 defines the TDL. To fix the noise issue, we must fix the undesirable dependence of the variance on e.
We do this by substituting ¢ = @/(4n) + ’LZJ into eq. (6), where 1; is a new unknown quantity representing
the amount by which the intensity 1 deviates from @/(47), and @ is an arbitrary function which we leave
undefined for now. The result of the substitution is,

1
—(oap+Q-V@)+gq. (7a)

Q. V¢+Ut¢— (<P @) — pp

Making the same substitution into eq. (1b) gives the new inflow boundary condition,

D%, Q) = Prne(x, ) — i@(x), xcdDand Q-n<0. (7b)
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—

Os V-Jd+o,0=0Qy, x€D,
P pY+q, 1
m sVp+oJ=Q:1 -V -T, xeD,

(%, Q) = Yine(x,02), x€9dDand Q-n<O0. J.n:%(p+2jin+ﬁ, x € 0D.

\_/

T(¢Y) = [0 Q© QY dQ — 11 [, ¢ dQ
ﬁ(w) :f§2 |Q'n|¢d9— %ngwdQ

QV¢+0tz/):

Figure 1: SMM algorithm.

How do we choose the arbitrary function @ in the transformed problem defined by egs. (7a) and (7b)?
We need ¢ — @ to be O(1/0;) in order to fix the noise issue because of how the variance depends on the
total source function, which we will show in section 4.1. A simple choice would be ¢ = ¢. We could make
this choice, and then account for the V¢ source term by sourcing MC particles on the material interfaces.
In a mesh where material interfaces coincide with interior mesh faces, and each mesh element contains a
different material, this would require sourcing MC particles on every interior mesh face.

Our approach avoids interior face sources by applying finite element differentiation to compute a vol-
umetric source that we sample instead of face sources. We choose ¢ # ¢ in order to avoid computing
Vi, which would introduce a well-posedness issue. This is because the solution of the transport equation
is generally not differentiable, and so approximating the derivative of the transport solution will not give
convergence no matter what numerical scheme is used. The formulation itself is not well-posed. Thus, we
choose ¢ such that it satisfies the following conditions,

1. V¢ is well-defined, and
2. o —@is O(1/oy).

Numerical evidence suggests that the first condition is necessary for our hybrid method to converge to
the correct solution in portions of phase space where the gradient of the transport solution may not be
well-defined, such as on material interfaces. The second condition fixes the noise issue by causing the MC
estimator variance to be O(e) instead of O(1/€). Choosing ¢ = ¢ would satisfy the second condition, but
not the first. We satisfy both conditions by solving a transient heat conduction equation for @,

05 1
E—v;tv@, xeD. (8&)

Equation (8a) satisfies the first condition because it tends to produce differentiable solutions. This is true
even when the initial condition is not differentiable, as in our case, because we use @ as the initial data:

P(x,0) = ¢(x), xe€D. (8b)

We satisfy the second condition by employing the following three techniques: i) choosing 1/0; for the
conduction coefficient in eq. (8a), ii) choosing a Dirichlet boundary condition with ¢ as the Dirichlet data,

o(x,t) = p(x), x€dD, (8¢)
and iii) computing a single timestep of backward Euler where the timestep size is subject to the limitation,

At 1
h? maxy o
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Figure 2 shows the resulting HSM algorithm. The second moment system in the HSM algorithm remains
unchanged from the SMM algorithm (see fig. 1). However, the transport equations differ, and the HSM
algorithm has an additional transient heat conduction solve. We use Monte Carlo to solve the transport
equation and a deterministic method to solve the moment system and the conduction equation. Monte
Carlo avoids the ray effects which can appear in deterministic methods, such as discrete ordinates (Sy ), due
to under-resolution in angle. The moment system and the conduction equation do not depend on angle.

~ ~ o B 1 B
Q- VU +o = (0= @) = - (0ap + 2 VP) +q,

1 " Monte Carlo
(%, Q) = Yine(x, Q) — —p(x), x€IDand N-n<0. ;

J-n=1p+2J,+8, x€ID.

47
v= 2 +9, ,
T ®, P

T(W) = [ Q@ QA2 — L [, 4dQ,

B) = fg= 192 -0|9dQ - § fi: ¥ dD
AU I % o | |
: V'J+Ua(p_Q07 X€D7 EZV%V@, XGD :
! 1 _ _ . ) : . . .
sVo+0,J=Q1—V-T, xeD, B(x.0)=p(x), x€D | Deterministic

Figure 2: Hybrid second moment (HSM) algorithm.

Algorithm 1 shows pseudocode for the HSM algorithm, in which gf; is a MC estimator of the angle
integrated intensity,

o= | vdQ, (10)
S2

and T and B are MC estimators of T and [, respectively. The first MC transport solve uses the fixed
source functions ¢ and i, whereas the subsequent MC transport solves use ¢ and @), which are
necessary to form the variable source functions. This allows us to use all of the particle memory to sample
the fixed sources before iterating, then re-use all of the particle memory to sample the variable sources
during the iteration. The iteration converges when the relative difference of successive iterates falls below a
user-provided threshold 7,

max
J

2(i=1) _ 2(4)
(W)m j= T, (1)
?;

where |7 is the number of elements in the mesh. In algorithm 1, we recompute the particle weights every
cycle, but the other parameters of the particles, as well as their histories, remain unchanged. We achieve
this by resetting the pseudo-random number generator seed every cycle of the HSM iteration (see fig. 3).
Finally, recall that the HSM method for solving egs. (1a) and (1b) does not include scattering events. Thus,
the histories of the particles in the MC transport solves in algorithm 1 do not include scattering events.
The histories consist of a sequence of zero or more facet crossings terminated with absorption or leakage.
The combination of having no scattering events, which allows each cycle to be computed quickly, and robust
convergence, which ensures that only a few iterations—ten or fewer in all the calculations presented here—are
required for convergence, makes HSM an effective algorithm for linear transport.
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Algorithm 1 Hybrid Second Moment
(

1 O T 0), BO) + me_transport_solve(q, thinc)
2: 1+ 1 R R
3: while not converged (¢, ¢() do
4: ¢ « second_moment _system_solve(Qo, Q;, T(%l), Bli=1)
5. @ « transient_heat_conduction_solve(p(?)
6: Gremps Ttemps Bremp < mc_transport_solve(p(?), @)
T qs(z) < QS(O) + ¢temp
8: T(l) — T(()) + r]A:‘temp
9: ﬁ(l) < 5(0) =+ 6temp
10: 14— 1+1
11: return ¢
1072

0.01251 € No seed reset

Seed reset

0.0100

0.00751 € No seed reset

Seed reset

o o
(=) S
(=) [en)
[\) <t
at (=)
Convergence criterion

Convergence criterion

1071
0.0000 1
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Cycle number Cycle number
(a) Linear vertical axis. (b) Logarithmic vertical axis.

Figure 3: Resetting the pseudo-random number generator seed allows the HSM iteration to converge to machine precision for
the convergence criterion specified in eq. (11). The information content of each particle history would be greater if the seed
were not reset. However, this approach would require a more sophisticated convergence criterion which depends on more than
just the current and previous iterates. For example, neutronics eigenvalue iteration algorithms typically do not reset the seed
and often compute a moving average of iterates to assess convergence.

3. Deterministic Component of HSM

In this section, we derive the second moment system of egs. (2a) and (2b) and the boundary condition
eq. (2c). We use a finite element method to solve the second moment system, as well as the transient heat
conduction eq. (8a), which we describe after presenting the weak form for each.

3.1. Derivation of the Second Moment System

We derive the second moment system of egs. (2a) and (2b) and the boundary condition eq. (2¢) following
the procedure in Olivier and Haut [22]. Define the zeroth, first, and second angular moments of the radiation
intensity 1,

o(x) = | ¢(x,02)d2, (12)

S2

J(x) = /S Qy(x,Q)dQ, (13)
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Pl = | 09 906xQ)d0. (14)

Define the zeroth and first angular moments of the arbitrary source function g,

Q0 = [ atx a0, (15)

Qi) = [ 24(x.0). (16)

Taking the zeroth and first angular moments of eq. (1a) gives,
V-J+0.0=0Qo, (17a)

V- Pt+oJ=Q,. (17b)

The system of egs. (17a) and (17b) is unclosed because it has ten unknowns and only four equations when
three spatial dimensions are considered. In 3D, the independent variables ¢, J, and P consist of 1+3+6=10
unknowns because they are a scalar, vector, and symmetric tensor, respectively; eq. (17a) is one equation,
and eq. (17b) is three. The exact closure which defines the Second Moment Method (SMM) is,

1
P=T+ 1o, (18)

where T is defined in eq. (4) and I is the identity matrix.
We derive a boundary condition by defining partial currents,

J;E:/ Q-nydQ, (19)
Q-n20

and performing algebraic manipulation,
J-on=J, +J7F

=20+ (Jy =)

:2J;+/SQ\Q~n|wdQ. (20)
Defining the quantity,

B(w) = [ 1920 vae, (21)

and using J;, as defined in eq. (3) allows us to write the unclosed boundary condition,

J-n=DB{)+2,. (22)

The exact closure for eq. (22) which defines the SMM is,
1

where 8 is defined in eq. (5). Substituting the exact SMM closure eq. (18) into eq. (17b), and the exact
SMM closure eq. (23) into eq. (22) gives the second moment system of egs. (2a) and (2b) and the boundary
condition eq. (2¢). Note that we switched from using ¢ in egs. (17a), (18) and (23) to ¢ in egs. (2a) to (2c)
to emphasize that, even though the second moment system is an equivalent reformulation of the transport
equation, ¢ can differ from the ¢ defined in eq. (12) after discretization, which is the case for our HSM
method.



3.2. Mized Finite Element Method for Solving the Second Moment System

The key consideration when solving the second moment system in our hybrid method is to avoid am-
plifying the noise in the SMM data, T and S. Computing T and [ using Monte Carlo introduces noise,
and differentiating a noisy quantity tends to amplify the noise. This suggests that we should solve the first
order form of the system. Additionally, numerical evidence suggests that we should solve a weak form of
eq. (2b) so that we can replace the strong derivative on T with a weak derivative. We use finite elements
to discretize space, and integration by parts to move the derivative from T to the test function. Integra-
tion by parts generates interior face integrals that we compute without interior face estimators. Instead,
we use finite element interpolation of a volume estimator of T to compute T on the interior faces. Other
approaches might also avoid noise amplification, and some may do so more efficiently; however, ours is a
sufficient approach to avoid it.

The first order form is a mixed problem, which requires simultaneously solving for two quantities that
belong to different finite element spaces. The FEM weak form for the mixed problem is: find (¢, J) €
Y1 x RTj such that,

/uV-de—i—/oaugpdx:/uQOdX7 Yu €Yy, (24a)
1 2
—f/V-vgodx—l-/otthdx—i-f/ (v~n)(J~n)ds:/'v~Q1dx—/ v-Tnds
3 3.Jr, Iy

+ g/ (v-n)(2Jin + 5)ds —/ [v] - {Tn} ds —|—/th :Tdx Vv e RI,. (24b)
Iy o
In egs. (24a) and (24b), ¢ and J are the scalar and vector trial functions, respectively, v and v are the scalar
and vector test functions, respectively, and Y7 and RTj are the degree-1 Discontinuous Galerkin (DG) and
degree-0 Raviart Thomas (RT) finite element spaces, respectively [23, 24]. Figure 4 shows the locations of
the Y7 and RT| degrees of freedom on the unit square.
The “broken” gradient Vp,, the jump operator [-], and the average operator {-} are defined as,

(Vau)lk =V(ulg) VK €T, (25)
U — U9 ./r S F()

_ 7 26

L] {u FeT, (26)

U1 + Uo

—_ T

fup={ "2 T (27)
u Fely

where K is an element in the mesh, 7 is the set of all mesh elements, F is a mesh element face, 'y is the set
of unique faces on the interior of the mesh, and T'; is the set of unique faces on the boundary of the mesh.

i
® [ ]
4 4
o [ ]
i
(a) Y1 (b) RT,

Figure 4: Location of the degrees of freedom for the (a) Y1 and (b) RTp finite element spaces on a square element. In (b), the
black diamonds and red squares denote degrees of freedom representing the z and y components, respectively.

To derive eq. (24a), let u € Y7, multiply eq. (2a) by u, then integrate over D. Deriving eq. (24b) requires
several steps and employs integration by parts rules created using the following vector calculus identities:

9



Product rule for divergence of a scalar (a) times a vector (F'):

V-(aF)=Va-F+aV-F, (28)

e Divergence theorem:

/V-Fdx: F -nds, (29)
K oK

Product rule for divergence of a vector (v) dotted with a tensor (T):

V-w-T)=v-(V-T)+T:Vuv, (30)

Double dot product involving vectors (v, n) and a tensor (T):

(v-T) n=v-(Tn). (31)

Combining eq. (28) with eq. (29) gives an integration by parts rule,

/Va~Fdx:—/aV~Fdx—/aKa(F-n)ds. (32)

Combining egs. (28) to (30) gives another integration by parts rule,

/v-V-de:—/T:Vvdx—/ v-Tnds. (33)
OK

The three steps for deriving eq. (24b) are as follows:

Step 1) Integration over element K
Integrating eq. (2b) over an arbitrary finite element K and applying the integration by parts rules gives,

1 1
—7/V-v<pdx+f/ go(’u-n)ds—i—/otv-de
3 Jk 3 Jox K

:/U-Qldx—/ v-Tnds—l—/V'u:de Vv € RTy. (34)
K oK K

Step 2) Sum over all elements
Summing eq. (34) over all elements K € T gives,

1 1
—*/V-v@dx-i-*/ go('u-n)ds—&-/aterdx
3 3 Jop

:/v-Qldx—/ap'v-Tnds—/F [[v]]-{{Tn}ds—i—/Vh'u:de Yv € RTy. (35)
0

Step 3) Enforce boundary condition

“Solving” eq. (2c) for ¢ and substituting the result into the second term in eq. (35) gives the final result,
eq. (24b).

An alternative derivation, as well as a hybridized Raviart-Thomas discretization of the second moment
system, are provided by Olivier & Haut [22]. The hybridized discretization allows one to solve a smaller
system for Lagrange multipliers, after which ¢ and J can be found through element-local back substitution.

Algorithm 2 shows pseudocode for the second moment_system_solve() function in algorithm 1.
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Algorithm 2 Mixed Finite Element Method Solve of Second Moment System

1: function second_moment_system _solve(Qq, @4, T, )
2: A « assemble_bilinear_form()

3: b <« assemble_linear_form(Qo, Q;, T, )

4 ¢ < linear_solve(A, b)

5 return ¢

3.8. Discontinuous Finite Element Method for Solving the Transient Heat Conduction Equation

As indicated in fig. 2, after we solve the second moment system for ¢, we then solve a transient heat
conduction equation for ¢. We use ¢ as the initial condition and the Dirichlet boundary condition in the
standard symmetric interior penalty discontinuous Galerkin (SIPDG) method [25]. For clarity of presenta-
tion, we write the Dirichlet boundary data as @p instead of ¢. The SIPDG weak form of eq. (8a) using
linear basis functions is: find ¢ € Y7 such that,

%/u@dx—i—/vhu-%vh@dx—/r[[uﬂ {{Ultv@n}}ds—/r{{gltv%n}} [#]ds
+HA{2;HMMﬂmz—Awbhmwpm+ﬂLﬁi;}uwﬂa Vuevi, (36)

where I' = T'g U I'} is the set of unique faces in the mesh, k is the penalty parameter, and h is the

characteristic mesh element width,
1/ dim
h= d .
e (/76) 0

Equation (36) is the standard SIPDG weak form for the model elliptic problem with nonzero Dirichlet
boundary conditions, and may be derived following the procedure outlined in Arnold et al. [26].

We discretize time using backward Euler. Let & contain the Y7 degrees of freedom for ¢. The ordinary
differential equation that arises after assembly of the weak form may be written,

0]
M%?:—K¢+f, (38)

where M, K, and f are the mass matrix, stiffness matrix, and load vector, respectively. Backward Euler is,
(M 4+ AtK)®" T = M®™ + At f, (39)

where the superscript denotes the timestep index and At is the timestep size. We compute a single timestep
with At equal to,

At = ah? (m}z(ix O't) , (40)

where we have introduced the timestep control parameter o € (0, 1] into the timestep size eq. (9) to allow
further control of the timestep size.

Algorithm 3 shows pseudocode for the transient heat conduction solve function that is called in algo-
rithm 1. There is no time loop because we only take a single timestep.

4. Monte Carlo Component of HSM

We use Monte Carlo to solve the transport equation and compute estimators of the SMM data. Instead
of using scattering events, we account for the scattering source by incorporating its contribution into the
particle weights. While tracking, we accumulate estimators for the SMM data T and . Specifically, we
compute 'i‘, which is an estimator for T, using path length estimators in each element. Let vol(K) be the

11



Algorithm 3 Discontinuous Finite Element Method Solve of Transient Heat Conduction Equation

1: function transient_heat_conduction_solve(¢p)
2 A « assemble_bilinear_form()

3: b ¢ assemble_linear_form(y)

4 @ < linear_solve(A, b)

5 return ¢

volume of element K, d the length of a path traversed by a particle in K, and w the weight of the particle
that traversed the path. Then,

~ ~ 1.~
T-P- 10, (41a)
- 1
¢ = m ; diw (41b)
- 1

where the index i is associated with a particle path, so €2; is the (entire) direction vector of the particle
that traversed path ¢ (not the ith component of the direction vector). Equations (41b) and (41c) are path
length estimators for the zeroth and second angular moments of the intensity, respectively.

We compute /3’, which is an estimator for 3, using surface crossing estimators on each boundary face.
Let area(F) be the area of boundary face F. Then,

B=B- %qﬁ (42a)
- 2
A 2 w;
$s = area(F) zl: | -n|’ (42¢)

Equations (42b) and (42c) are surface crossing estimators for the first and zeroth angular moments of
the intensity on a surface, respectively. Derivations of egs. (41b), (41c), (42b) and (42c) can be found in
Chapter 3 of Pozulp [27].

Every source is either a volume source in some subset of the domain, or a surface source on some subset
of the domain boundary. Below, we describe how we compute weights for volume source particles and for
boundary source particles. Consider the arbitrary source function ¢ = ¢(x,€2), which is a volume source.
Let U(-) be a uniformly-distributed random variate on some domain. For example, U(a,b) is uniform on
(a,b). The weights that we assign to the particles sourced from the volume source ¢ are,

_ 4mvol(D)

w; = ~ q(x;, ), x; + U(D), Q,; « U(S?) (43)

where IV is the number of particles sourced from ¢ and < denotes the generation of a random variate. The
weights that we assign to the particles sourced from the inflow boundary source ¥, (x, ) are,

_ 2marea(dD)

where M is the number of particles sourced from in., and S} is the unit hemisphere at x; defined by
Q; -n < 0. Algorithm 4 shows pseudocode for the Monte Carlo transport solve function that is called in
algorithm 1. There are no scattering events; the contribution of the scattering source is included in the
particle weights.

12



Algorithm 4 Monte Carlo Solve of Linear Transport Equation

1: function mc_transport_solve(vs, bs)

2 particles «— sample_volume_source(vs)

3 particles « particles 4+ sample_boundary_source(bs)

4: tallies < 0

5: while any(particles.alive) do

6 intersection_distances < compute_distances(particles)

7 collision_distances «— sample_distances(particles)

8 intersection_mask <« intersection_distances < collision_distances

9: collision_mask < intersection_distances > collision_distances

10: tallies +— tallies + move_across_element_boundary (particles[intersection_mask])
11: tallies «— tallies + move_to_collision_location(particles|collision_mask])
12: particles[collision_mask].alive < false

13: return tallies

4.1. Thick Diffusion Limit Analysis

In section 1, we mentioned that a Monte Carlo estimator of the solution to eq. (6) would have a variance
that approaches infinity in the thick diffusion limit (TDL). Here, we define the dependence of the variance
on the TDL parameter ¢, the order of the total source function @), and the order of the inflow source function
Yinc. The function @ is simply the right-hand side of the transport equation. The value of Q for eq. (6) is
the product of the scattering source and the inhomogeneous source function,

Os
=7 . 45
Q 47T<p+q (45)

The connection between the variance of our MC estimators, €, ¥, and @ is stated in theorem 1.

Theorem 1. Let QQ be the total source function of a transport problem with the following form,
Q- Vy+op=0Q,
subject to the inflow boundary condition,
(%, Q) = VYine(x,02), x€IDand -n<0.

Let Var[-] be the variance of an estimator for some quantity in a weighted Monte Carlo particle simulation
of this transport problem, such as the angle integrated intensity, and let € be the thick diffusion scaling limit
(TDL) parameter. Then Var[-] is,

0 ( max {order(Q)Q, order(q/Jmc)z} e) ,

where order(Q) and order(¢;,.) are the powers of € which define the leading order term in the TDL scaling
of Q and Y., Tespectively.

A proof is provided in Pozulp and Haut [28].

Theorem 1 is the motivation for the transient heat conduction solve in HSM. We show this by using
theorem 1 to derive the dependence of the variance of our estimators on e for different ). First, we assume
that i, is O(1), which simplifies the variance expression in theorem 1 to O(max{order(Q)?,1} €). Impose
the TDL scaling of the transport equation data [3],

oy < o¢/€, (46a)
Oq ¢ 0q€, (46b)
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q < ge. (46¢)

Thus, o, and ¢ are O(e), o and o, are O(1/¢) because o5 = 0y — 04, and ¢ is O(1). We can label the terms
and coefficients in the total source function from the untransformed transport eq. (6) to determine how @

scales with e as follows,
Os

Q=
o, 00
O(e—1)
Thus, @ for eq. (6) is O(1/€), because 1/e > e. By theorem 1, Var[-] is O(1/e¢) for estimators computed in
a weighted Monte Carlo particle simulation of the untransformed problem. The variance limits to infinity.
The MC solution of the untransformed problem is infinitely noisy in the TDL.

Now consider the total source function in the transformed problem, defined by egs. (7a) and (7b), which
introduces the arbitrary function @. Recall from the HSM algorithm description in section 2 that we choose
@ such that ¢ — @ is O(1/0¢). The reason that we make this choice is to preserve the order reduction of
O(1/e) to O(1) for Q that is achieved when @ = . As previously noted, we do not use @ = ¢ because we
want to avoid material interface sources and well-posedness concerns. We want ¢ — @ to be O(1/0:) because
of how the terms in the @ for eq. (7a) scale,

(47)

o B 1 _
Q=-"(p—¢)— —(0.p+2-V@)+ q . (48)
4 AT ' —— =~
o o) 0(e)
o(1)

Thus, @ for eq. (7a) scales as,
O(max {order (Z—t(go — @)) , 1}) . (49)
77
We seek an order reduction of O(1/€) to O(1) for Q). We achieve this by choosing @ such that p—@ is O(1/0y).
By theorem 1, Var[-] is O(¢) for estimators computed in a weighted Monte Carlo particle simulation of the
transformed problem. The variance limits to zero. Thus, the variance of estimators for the transformed
problem is substantially lower because it limits to zero instead of infinity in the TDL. This result is what

gives HSM the desirable property of requiring fewer MC particles to achieve a desired uncertainty as the
optical thickness of the transport problem increases.

5. Numerical Results

We implemented an MPI-parallel Monte Carlo solver in the C programming language which distributes
the simulation particles evenly amongst the MPI ranks. All ranks source and track particles. To implement
the second moment system and the transient heat conduction equation solvers, we used the C++ program-
ming language with the MPI-parallel finite element library MFEM [29] along with the MPI-parallel sparse
iterative linear solvers library HYPRE [30] and the MPI-parallel sparse direct linear solver library SuperLU
[31]. We used HYPRE’s algebraic multigrid preconditioner with the conjugate gradient solver to invert the
coefficient matrix in the discretized transient heat conduction system defined by eq. (39). We used SuperLU
to invert a Schur complement of one of the diagonal blocks of the second moment system block operator after
computing the inverse of another block of element matrices using element-wise Gauss-Jordan elimination
with partial pivoting. We used SuperLU because, in the largest problem we considered, inverting the second
moment system accounted for less than 4% of the total calculation runtime. This allowed us the luxury of
computing the solution to (a small multiple of) machine precision. However, SuperLU is not required; fast
iterative linear solvers can be used to invert the second moment system and have been shown to be efficient
on large second moment systems for various polynomial orders, as demonstrated by Olivier & Haut [22].
We set the penalty parameter to x = 4 and the timestep control parameter to a = 0.001. We source the
same number of particles in the domain and on its boundary, so N = M in egs. (43) and (44).

We present numerical results for different linear transport problems modeled by eq. (1a) with the bound-
ary condition eq. (1b). In section 5.1, we solve a problem with a single material to verify that our HSM
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method has a numerical error that agrees with our expectation for how the error should depend on the
number of particles and the element width. In section 5.2, we solve another single-material problem, the
purpose of which is to show how the HSM solution behaves as the optical thickness of the material increases.
Finally, in section 5.3, we solve a proxy problem from radiative transfer that contains both optically-thick
and optically-thin material, and show that our hybrid method runs orders of magnitude faster than Monte
Carlo, without sacrificing accuracy. Our numerical results provide what we believe to be the first demon-
stration of a hybrid SMM in more than one spatial dimension, the first to consider more than one material,
and the first to use variance reduction.

5.1. Method of Manufactured Solutions Problem

The Method of Manufactured Solutions (MMS) is a code verification technique in which one chooses
an analytic solution, which is called the “MMS solution”. One then substitutes the MMS solution into the
partial differential equation to derive expressions for the problem data, which includes: sources, boundary
conditions, and the initial condition [32, 33, 34]. We use MMS to verify that our HSM method has a numerical
error of O(h)+O(N~1/2), where h is the characteristic mesh length defined by eq. (37), and N is the number
of MC particles. The first term is due to the h?*! convergence of the mixed finite element discretization
of the second moment system, where p = 0 in our case because we use Y;, RTj, and piecewise constant
MC estimators for the SMM data. The second term is due to the y/Var[-]/N uncertainty of the estimators
computed in the Monte Carlo component of HSM. The hypothesized convergence rate of O(h) + O(N~'/?)
defines an error surface that decreases in height as one traverses simultaneously upward and rightward in
fig. 5.

of decreasing
numerical error
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= .
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=
<
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Figure 5: Calculation points on the HSM error surface.

By making h small and running multiple calculations with increasing IV in the “particle scaling study”,
we observe the O(N -1/ 2) term in the hypothesized convergence rate, and by making N large and running
multiple calculations with decreasing h in the “element scaling study”, we observe the O(h) term. We let
D = [0,1]%, 0, = 2, 05 = 1, and we solve the problem specified by egs. (1a) and (1b) for the MMS solution
in Equation (89) in [35]. The MMS solution is,

1
Ymms(x, Q) = = ( sin(rx) sin(ry) + Q.2 sin(27z) sin(27y)
T

5 )
+ Q2% sin (gx + %) sin (—ﬂ-y + z) + 0.5) . (50)

2 4
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We substitute the MMS solution into the equations on the left of fig. 1, solve for ¢ and v;,., and use them
in the MC component of our HSM solver. Similarly, we substitute the MMS solution into the equations
on the right of fig. 1, solve for g, @, and Ji,, and use them in the deterministic component of our HSM
solver. The MMS source expressions for ¢, ¥inc, Qo, Q; and Ji, can be found in Section 5.1.1 of [27].

Equation (50) cannot be computed with the radiation diffusion approximation because it is quadratically-
anisotropic. Additionally, eq. (50) exercises the coupling of the MC component of HSM with the deterministic
component of HSM because it has nonzero SMM data T # 0 and 5 # 0. Finally, eq. (50) also exercises our
implementation of the boundary conditions because it has nonzero inflow ¥;,. # 0, and so Ji, # 0.

The solution that we seek with HSM is the angle integrated intensity, which we can express analytically
by integrating eq. (50) over the unit sphere to get,

1
onvms (x) = sin(ma) sin(my) + 3 sin <527Tx + Z) sin (E);Ty + Z) +0.5. (51)

The HSM estimator approximates the average angle integrated intensity on each element. Averaging eq. (51)
over an arbitrary rectangle gives the analytic expression to which we compare our HSM solution,

— 1 T2 Y2
= d . 2
dmms (21, T2, Y1, Y2) ET T a— /zl . Pnmms (x) dy dz (52)

Evaluating the integrals in eq. (52) gives the final analytic expression,

T2 — xl)(y2 - yl) ﬁ

—&-i {cos 5—7Tx —&—I — COs 5133 —I—E Hcos 5—7T +z — COs 51 +E } (53)
7572 2 2Ty 9 1Ty 2 27 ] 2 1Ty :

We use a computational mesh of equally-sized squares, so we simply evaluate eq. (53) using the z1, z2, y1,
and yo values which define the left, right, bottom, and top edges of each square in our mesh. Figure 6 shows
plots of ¢ymvs and ¢anvs on the calculation domain D = [0,1]2.

We determine the error of our numerical solution with respect to eq. (53) in the element scaling study
by computing the norm of the difference and dividing by the square root of the number of elements,

dnims (T1, T2, Y1, Y2) = ( L < ! {{cos(mrg) - cos(mcl)} [cos(wyg) — cos(ﬂ'yl)}}

Element scaling study error = h||¢A5 — dmms) |z s (54)

where h is the characteristic mesh length defined by eq. (37). In the particle scaling study, the mesh is fixed
at 64 x 64 elements for all 6 calculations, so the normalization factor h in eq. (54) is replaced by unity,

Particle scaling study error = || — dnus]|2 - (55)

Derivations of egs. (54) and (55) may be found in Section 5.1 of [27].

The results in fig. 7 demonstrate that HSM converges under mesh refinement and MC sample augmen-
tation, and that the rate of convergence with respect to the element width and number of MC particles
matches our hypothesis of O(h) + O(N~1/2). The slight degradation in convergence at the highest mesh
resolution, appearing as liftoff above the dashed curve at the bottom-left of fig. 7b, is expected behavior
because we distribute a fixed number of MC particles across more and more elements under mesh refinement.
We confirmed that this was the case by running fewer MC particles and observing earlier liftoff, as well as
running more MC particles and observing delayed liftoff.

5.2. Thick Diffusion Limit Problems

The thick diffusion limit, characterized by the parameter € € (0,1] when € — 0 for the problem data
scalings defined in eqs. (46a) to (46¢), is a challenging regime for transport methods. Unaccelerated source
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Figure 6: The MMS solution eq. (51) and its average eq. (53) on D = [0, 1]2.
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Figure 7: Error of HSM iterate qg(i) upon convergence.

iteration calculations require O(1/€?) iterations to converge, and unaccelerated MC calculations require
O(1/€%) runtime to finish. We show that the HSM runtime is independent of €, and that our variance
reduction provides the desirable O(e) estimator variance, rather than O(1/e).

Let D = [0,1]? as in section 5.1, but now define the problem data in eqs. (la) and (1b) using the
TDL scaling eqs. (46a) to (46¢). Thus, unlike in our MMS calculation where oy = 2 and o5 = 1, here we
use oy = 1/e and o5 = 1/e — e. Also, in our MMS calculation, ¢ is a complicated expression derived by
substituting the MMS solution into eq. (1a). Here, we use the very simple expression ¢ = e.

Consider four different € values: 107!,1072,1072, and 10~%. We run calculations for each value using
10 million HSM volume source particles, no boundary source particles, and a vacuum boundary condition.
We compute the angle integrated intensity averaged over each element in an 8-by-8 mesh of squares of equal
size. Our solution is a surface on the xy-plane. We present HSM solution lineouts. Figure 8 shows that our
HSM solution appears to converge to the diffusion limit solution as ¢ — 0 because the lineouts appear to
approach an equilibrium solution in the sense that successive lineouts differ less for smaller e.

What about runtime? The convergence depicted by fig. 8, which shows solution lineouts for four calcula-
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Figure 8: Lineouts at y = 0.5 of HSM angle integrated element averaged (ATEA) intensity for calculations using four different
values of the TDL scaling parameter e.

tions using the HSM method, would be the same picture for unaccelerated Monte Carlo (UMC)!. However,
the runtimes of HSM and UMC in the TDL are very different. Figure 9 shows that the HSM runtime is con-
stant with respect to the TDL scaling parameter, or O(1), whereas the UMC runtime increases quadratically
with the inverse of €, or O(1/€%). HSM substantially outperforms UMC in terms of runtime as € — 0.
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Figure 9: Runtime of unaccelerated Monte Carlo (UMC) and hybrid second moment (HSM) methods for calculations with
different values of the TDL scaling parameter e. The € values are 20,271,272, . . 2713,

What about variance? A common figure of merit used with MC methods is the inverse of the product
of the variance and the runtime,

Figure of merit = (56)

Var[-] T’

where Var[-] is the variance of some estimator and 7' is the runtime of the calculation. Decreasing either
Var[-] or T increases the figure of merit. Reading fig. 9 from right to left, we observe that Tusm < Tumc

1We use the acronym UMC (instead of MC) to emphasize that the solution we compare with our HSM approach does not
employ any of the acceleration techniques described in section 1, such as Fleck & Canfield’s Random Walk, IMD, or DDMC.
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after ¢ falls below a value somewhere between € = 1/4 and 1/8, and that Tysm << Tumc beginning at
about € = 1/32, which is a result that holds for all smaller € values. This factor of €2 decrease in the runtime
would be useless if the variance of the HSM estimator increased by a factor of 1/€? relative to the UMC
variance, because eq. (56) shows that the figure of merit would be left unchanged.

We calculate the variance of the HSM solution in the TDL by running 600 realizations of the same
calculation on a single-element mesh with a different pseudo-random number generator seed for each calcu-
lation. Each calculation computes the angle integrated intensity averaged over the lone mesh element. The
domain is D = [0, 1]?. We use 100 million HSM particles for each calculation. We consider five different
optical thickness parameter values, 1071, 1072,1073,107%, and 10~°. Thus, the total number of calculations
is 600 x 5 = 3000. We estimate the variance as the sum of squares of the difference of the HSM angle
integrated element averaged intensity estimator realizations with the mean estimate,

R 1 600 R
Var[g] ~ o= > (0 = @)%, (57)
i=1

where ® is the mean estimate defined by ® = (1/600) Zfﬂﬂ ;. Figure 10 shows that the empirical variance
of the HSM estimator ¢ in the TDL before variance reduction is O(1/e), which matches our expectation

based on the fact that Var[¢] is O(1/€) when @ is O(1/¢), and after variance reduction is O(e), which
matches our expectation based on the fact that Var[¢] is O(e) when @ is O(1).
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(a) Variance of HSM estimator for eq. (6). (b) Variance of HSM estimator for eq. (7a).

Figure 10: Hybrid Second Moment estimator variance before variance reduction (a) and after variance reduction (b).

5.3. Linearized Crooked Pipe Problem

We now consider a problem containing both optically-thick and optically-thin material. The Crooked
Pipe is a thermal radiative transfer benchmark problem proposed by Graziani and LeBlanc [36]. The authors
describe radiation flow down a pipe with a bend. In the Crooked Pipe problem description, a boundary
source of radiation shines on one end of an optically-thin pipe surrounded by an optically-thick medium.
Radiation flows preferentially through the pipe, around a bend in the pipe, and then leaves the problem
through a vacuum boundary on the other end of the pipe.

Crooked Pipe is a time-dependent problem. The solution described in the problem statement is the tem-
perature time-series at five fiducial points inside the pipe. We solve a steady-state simplification sometimes
called the Linearized Crooked Pipe. The linearization is equivalent to calculating one very large timestep
of a backward Euler time integrator. The timestep is such that cAt = 103. The pipe is 1000 times opti-
cally thinner than the surrounding medium. Figure 11 depicts the geometry, material data, and boundary
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conditions for the problem. The boundary source is isotropic on the inflow hemisphere with magnitude,

. (58)
0 otherwise .

B {;ﬂ z=0and — 0.5 <y <0.5,
¢inc -
Finally, there is an isotropic volume source with constant value ¢ = 10~7 everywhere in space, which emulates
the material emission source term in the thermal radiative transfer equations.

Consider a mesh composed of squares of equal sizes. The minimal number of uniform squares required to
tessellate the geometry such that all material interfaces are on element boundaries is 14 x8 = 112. Figure 12a
shows the aforementioned mesh elements, all of which contain material with single-valued properties, because
each element contains either optically-thin pipe material, or optically-thick surrounding material, but not
both. Figure 12b shows the mesh after splitting each element into four squares of equal size to create a
new mesh with 28 x 16 elements. Repeating this refinement operation three more times results in a 224
x 128 mesh, with 28,672 square elements, which is the mesh that we used in our calculations. We set the
convergence threshold 7 in the convergence criterion eq. (11) to 1073. We computed a piecewise constant
angle integrated intensity using our gf; estimator of ¢. Our estimator approximates the average of ¢ on each
element, meaning that it is single-valued within a mesh element.

We ran three calculations. We computed HSM and UMC solutions using 16 million simulation particles.
We also computed a radiation diffusion approximation solution. Figure 13 shows pseudocolor plots of the
three solutions. Three comments regarding the results in fig. 13 are:

1. The HSM and UMC solutions agree to about 3% in the infinity norm (1.82/1.76 ~ 1.03).

2. The bright illumination of the front wall and the dark shadowing of the back wall are the most
prominent in UMC, remain visible in HSM, and are nearly indiscernible in the diffusion approximation.

3. Similarly, the section of pipe nearest to the right boundary is darkest in UMC and brightest in the
diffusion approximation, with HSM somewhere in between.

Without variance reduction, HSM requires about 500 times more simulation particles—8 billion instead of
16 million—to provide a solution with as little noise as UMC. While we do not present the noisy solution
here, it can be found in the final figure of [28], which includes a pseudocolor plot of the noisy solution.

What about runtime? We ran the HSM and UMC calculations with 500 and 100 different pseudo-random
number seeds, respectively, and found that the median runtime was about two orders of magnitude faster
for HSM (which is why we ran five times more HSM calculations). The substantial runtime savings is due
to the cost of the billions of scattering events in the UMC calculation, which we completely avoid by not
having scattering events in the HSM algorithm.

What about variance? When calculating the variance for the collection of 500 HSM calculations and
100 UMC calculations, we get one value per mesh element. We desire a transport method with high global
accuracy, so we choose to compare the maximum of the element variances. We found that the maximum
variance is about one order of magnitude lower for UMC than for HSM. Thus, the figure of merit defined
by eq. (56) is about one order of magnitude greater for HSM than UMC. Table 1 summarizes these results.

Figure 14 shows pseudocolor plots of the variance, revealing that the UMC variance is highest in the
optically-thick material, while the HSM variance peaks at the inflow boundary. This suggests that we could
reduce the HSM variance by sourcing more particles in the elements near the inflow boundary during the
HSM iteration. In general, it would be better to sample the variable sources non-uniformly. This approach
would provide a particle weight distribution with reduced dispersion, thereby decreasing the HSM variance.
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Figure 11: Linearized Crooked Pipe geometry, material data, and boundary conditions [35].
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Figure 12: Minimal uniform square mesh of the Linearized Crooked Pipe geometry with single-valued material property elements
(a), and the same mesh after splitting each element into four squares of equal size (b).

Runtime Variance FOM
HSM Om 22s 3.66-10~* 124.2

UMC  41m 35s 5.20-107° 7.7

Table 1: Median runtime, maximum variance, and figure of merit (FOM) for HSM and UMC calculations using 500 and 100
different pseudo-random number seeds, respectively.
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Figure 13: HSM (a), UMC (b), and diffusion (c) solutions for the Linearized Crooked Pipe.
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Figure 14: The variance of the solution estimator for HSM (a) and UMC (b).
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6. Conclusions

In this work, we presented what we believe to be the first demonstration of a hybrid Second Moment
Method for linear transport in more than one spatial dimension, the first to consider more than one material,
and the first to use variance reduction. We refer to our method as hybrid Second Moment (HSM).

HSM uses Monte Carlo (MC) instead of Sy to invert the transport operator. This approach avoids
unphysical starburst patterns in the numerical solution, known as “ray effects”, which are caused by angular
under-resolution in Sy methods. However, using MC introduces a variance issue, which we addressed by
computing the deviation of the radiation intensity from isotropy. The magnitude of the source in the
transformed problem is bounded, and the quality of the hybrid method solution is dramatically improved by
a substantial reduction in the variance. Our analysis of the thick diffusion limit (TDL) provided a theoretical
basis for the variance that we should expect with HSM, and we included a numerical demonstration of the
hypothesized value. This motivated the inclusion of a transient heat conduction solve which, along with the
second moment system solve, forms the deterministic component of HSM.

We showed that HSM performs well on a proxy problem from radiative transfer containing both optically-
thick and optically-thin material. In this way, HSM is similar to thermal radiative transfer algorithms such
as IMD or DDMC, which dramatically reduce the expense of implicit Monte Carlo (IMC) calculations in
the TDL. However, IMD and DDMC make diffusion approximations, require phase-space partitioning, and
have yet to be extended to reentrant elements. HSM does not make a diffusion approximation, does not
partition phase-space, and does not require a non-reentrant mesh. Table 2 summarizes these differences.

Future work on HSM could include investigating alternatives to the transient heat conduction solve,
improvements to reduce the variance in the Linearized Crooked Pipe problem relative to unaccelerated Monte
Carlo, comparisons in cost/accuracy to IMD and DDMC, extending HSM to TRT, and accommodating more
physics such as line transport or Compton scattering in the MC solve and the deterministic low-order system.

HSM  IMD or DDMC

Orders of magnitude speedups

No diffusion approximation

No phase-space partitioning

No issues with reentrant elements

No iteration

No linear solver

No negative energy-weight
Demonstrated in production calculations

XX X X NSNS S

NANNAX X X N

Table 2: Comparison of HSM and IMD or DDMC for selected qualities.
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