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Abstract

A Hybrid Monte Carlo-Deterministic Second Moment Method for Thermal Radiative
Transfer

by

Michael Mettler Pozulp

Doctor of Philosophy in Applied Science and Technology

University of California, Berkeley

Professor Jasmina Vujic, Chair

Computer simulations of hot matter often solve a coupled system of partial integro-differential
equations for the matter temperature and the radiation specific intensity. While the former
quantity is four dimensional through space-time dependence, the latter quantity also in-
cludes frequency and angle dependence, which makes it seven dimensional. The Monte Carlo
method is often used in production to compute this high-dimensional quantity. Faster, less
accurate calculations solve a diffusion approximation using a deterministic method. I present
a novel hybrid method which combines the two approaches.

The aforementioned system of equations that my method solves is called the thermal radiative
transfer (TRT) equations. The TRT system is nonlinear. I linearize the system using the
standard implicit multigroup algorithm for x-ray photon transport called implicit Monte
Carlo (IMC). One timestep of IMC solves a linear transport equation using random variates
to create simulation particles called IMC photons and advances them through phase space. I
replace a single IMC timestep with multiple steps which are computationally more efficient.

My replacement is an iteration. Every iteration cycle, I couple a Monte Carlo solve of the
linear transport equation with a deterministic solve of a transport-corrected diffusion system
in a hybrid Second Moment Method (SMM). The SMM system is linear because it uses an
additive closure to close the moment system. This contrasts with another moment method
called Variable Eddington Factor (VEF) which is nonlinear because it uses a multiplicative
closure. The left-hand side of the SMM system is the standard radiation diffusion operator.
The right-hand side includes the standard radiation diffusion sources, plus an additional
source term involving a quantity called the correction tensor, which couples the SMM system
with the transport equation.

Pre-existing work uses a deterministic method known as Discrete Ordinates (SN) to com-
pute the correction tensor. Angular discretization errors, known as ray effects, can create
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unphysical starburst patterns in SN solutions. My choice to use Monte Carlo instead of SN

avoids ray effects at the cost of introducing random variability, also known as statistical
noise. This presents two problems: the noise itself and noise amplification. I manage the
noise itself using standard Monte Carlo variance reduction techniques. The noise amplifica-
tion is caused by differentiation of the correction tensor in the SMM system, which I avoid by
solving the first-order SMM system using a mixed finite element method (FEM). Applying
an integration by parts rule during the FEM derivation of the weak form of the first-order
SMM system offloads the derivative from the correction tensor to the FEM test function.

I demonstrate the viability of my novel hybrid method by using it to solve linear transport
problems in two spatial dimensions. I intend my demonstration of my method to serve as a
foundation for its implementation in production computer simulations of hot matter.
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Chapter 1

Introduction

I present a novel hybrid method for solving the equations of thermal radiative transfer (TRT).
The TRT equations are a useful model for computer simulations of hot matter. I describe
the physics underpinning the TRT equations in section 1.1 of this introduction. My goal
is to elucidate the limitations of the model so that readers can decide whether the model
is appropriate for their application before spending time learning my method. I show the
TRT equations in section 1.2 and I give descriptions of existing TRT solution methods in
section 1.3. I finish this introduction with a summary of my method in section 1.4 and
summaries of some methods which are similar to mine in section 1.5.

A hybrid method for solving the TRT equations combines Monte Carlo methods with de-
terministic methods in an attempt to utilize the strengths and circumvent the weaknesses of
the two approaches. Deterministic methods discretize every dimension of the TRT equations.
Discretization converts the TRT equations, which are a system of continuous equations, to
a system of discrete equations. The continuous system, when solved in a specified func-
tion space, requires an infinite number of degrees-of-freedom to represent its solution. The
discrete system has a finite number of degrees-of-freedom, though the number required for
an acceptable approximation of the solution to the continuous system can be very large.
A discrete solution will converge to the continuous solution in the limit of infinitely many
discrete equations. In the deterministic component of my hybrid method, which I describe
in Chapter 2, I use a mixed finite element discretization to compute a scattering source for
the Monte Carlo component.

Monte Carlo methods use a random sample of photon histories to compute an estimator
which converges to the TRT solution in the limit of infinitely many photon histories. A
photon history is the sequence of events undergone by a simulation photon. Events include
emission, scattering, and absorption. Random numbers and physical properties of the matter
determine the quantity and type of events that constitute the histories. In the Monte Carlo
component of my hybrid method, which I describe in Chapter 3, I use a random sample of
photon histories to compute source terms for the deterministic component.

The system of TRT equations is nonlinear, but can be linearized over a timestep to
produce a system of linear equations. The solution of the linear system converges to the
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solution of the non-linear system in the limit of infinitely many timesteps. The solution for
a finite number of timesteps is often a useful approximation of the TRT solution.

My hybrid method is a novel approach for computing the numerical solution of the linear
system. I demonstrate my hybrid method by implementing it and using my implementation
to compute a numerical solution to the linear system. I describe the way that I combine
the deterministic and Monte Carlo components of my method, along with some details of
my implementation, in Chapter 4. Finally, I present solutions that I calculated using my
implementation for several problems in Chapters 5 and 6, and I offer some concluding remarks
as well as ideas for future work in Chapter 7.

1.1 Physics of Thermal Radiative Transfer

Hot matter radiates. In this context, “radiate” means to emit light, or electromagnetic radia-
tion (they are the same)1. This fundamental physical phenomenon underpins many physical
sciences; it is perhaps most important for observational astronomy. It also influences many
life sciences, like biology, because biological organisms use radiation. For example, radiation
is how we see. Our eyes are sensitive to a narrow band of radiation called “visible” light.
We “see” an object when our eyes detect the visible light emitted, reflected, or scattered by
the object. Solar radiation allows us to perceive our surroundings, a task which increases in
difficulty when the sun descends beneath the horizon. Moonlight, which is sunlight reflected
off the moon, allows us to see even when the sun is obscured by the Earth.

Most radiation we cannot see. If our eyes were sensitive to long wavelength light, our
skin would appear bright, even in the darkness of a moonless night. If our eyes were equally
sensitive to even longer wavelengths, our clothes would appear bright too, but not as bright
as our skin. This is because hot matter radiates, even if the matter is not as hot as the
sun, and hotter matter radiates more intensely, which is why our skin would appear brighter
than our clothes. A more detailed explanation for this skin-and-clothes example requires
the definition of a physical quantity called temperature, which I describe in section 1.1.1.
Emission, which is the production of radiation, accompanies temperature.

Hot matter absorbs. Absorption, which removes radiation by transferring its energy to
matter, is the opposite of emission, where energy is released by radiation. In his explanation
of the photoelectric effect, for which he won the 1921 Nobel Prize in Physics, A. Einstein2

argued that radiation absorption causes the photoelectric effect. He said that illuminating
matter with radiation exceeding a frequency threshold causes the matter to absorb the
radiation. The matter then emits photoelectrons, which are the observable consequence of
the photoelectric effect.

Absorption and emission are caused by electrons. A photon is a packet of radiation. The
number of electrons bound to an atom strongly influences the way that a photon will interact
with it, just like the number of nucleons bound in an atomic nucleus strongly influences the

1Hereafter, I refer to electromagnetic radiation as simply “radiation”.
2Albert Einstein (1879-1955) was a German physicist.
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way that a free neutron will interact with it. The quantity of bound electrons is determined
by the atomic number of the element and the ionization level of the matter.

1.1.1 Temperature

In perhaps the most common scientific usage of the term, temperature refers to a single
value which parameterizes the distribution of kinetic energies of the particles that consti-
tute matter. If a particle has mass m and velocity magnitude v, then it has kinetic energy
E = mv2/2. Kinetic temperature comes from a kinetic theory of gases developed in the
19th century by J.C. Maxwell3 and L. Boltzmann4. In the first year of the 20th century,
Max Planck5 contributed a new meaning: temperature refers to a single value which param-
eterizes the spectral distribution of radiation specific intensity. A spectral distribution is a
distribution that depends on radiation frequency (or wavelength, because photon wavelength
λ can be written in terms of photon frequency ν as λ = c/ν where c is the speed of light in
vacuum). I explain radiation specific intensity in section 1.2. A third definition, also con-
tributed by Boltzmann, is that temperature refers to a single value which parameterizes the
distribution of electron excitation states. Excitation occurs when an electron is promoted to
a higher energy level within the atom to which it is bound.

The three definitions of temperature, and the three distributions which they parameterize,
correspond to three energy reservoirs: radiation, kinetic motion of the matter particles, and
electronic excitation of the matter particles. A flurry of scientific discoveries over the last
two centuries revealed myriad mechanisms by which energy transfers between the three
reservoirs. Fig. 1.1 depicts the three reservoirs as vertices of a triangle, its edges labeled
with examples of processes which transfer energy between the reservoirs. Bremsstrahlung is
radiation produced by the deceleration or deflection of a charged particle, such as an electron.
Compton scattering transfers energy from a photon to a charged particle in a collision that
causes the photon to lose energy and change direction.

The distribution corresponding to the center vertex in Fig. 1.1 is the Planck distribution.
It describes the relative occurrence of emission photons of different frequencies. Radiation
is an energy reservoir because photons have energy. The energy of a photon is the product
of the photon frequency and Planck’s constant, E = hν. The Planck distribution is,

B(ν, T ) =
2hν3

c2
1

ehν/kT − 1
. (1.1)

See Physics Symbols, Math Symbols, Finite Element Symbols, and Monte Carlo Symbols in
the front matter for definitions of the symbols in Eq. (1.1) and all subsequent equations in this
dissertation. Eq. (1.1) is consistent with the notion that hot matter radiates, and that matter
need not be as hot as the sun to have Planckian emission: B exists for any T > 0. Matter

3James Clerk Maxwell (1831-1879) was a Scottish physicist.
4Ludwig Boltzmann (1844-1906) was an Austrian physicist.
5Max Planck (1858-1947) was a German physicist.
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Figure 1.1: Energy reservoir triangle [1].

emits radiation because of emission processes such as those listed on the left and right edges
of the triangle in Fig. 1.1. These are microphysical processes involving one or two matter
particles. The Planck distribution is a macroscopic representation. Like other results in
statistical mechanics, it reduces a system with an enormous number of degrees of freedom
(position, momentum, species, and other attributes of every matter particle) to a single
degree of freedom (temperature). Thus, Planckian emission is an idealization. No object has
emission that is perfectly Planckian. Some objects come very close. Solar emission produces
a frequency spectrum that closely matches a Planck distribution at T = 5788 Kelvin.

Brightness refers to the radiation specific intensity of an object, meaning one object is
brighter than another at a specified frequency if it emits, reflects, or scatters light with greater
intensity at that frequency. A plot of the Planck distribution at two different temperatures
can illustrate the relative brightness of two objects at different temperatures if one can
assume that the objects have emissivities which are approximately Planckian. Earlier, I
argued that skin is brighter than clothes, by which I meant that BTclothes

< BTskin
. Fig. 1.2

shows a plot of the Planck distribution for room-temperature clothing (295 Kelvin) and skin
temperature (310 Kelvin). Thus, to someone with eyes sensitive to low frequency radiation
who is observing in the absence of other light sources, skin appears brighter because skin
has brighter emission because skin is hotter. If one measured the emission spectra from
skin and clothes, the spectra would deviate from the Planckians plotted in Fig. 1.2, but the
Planckians may be qualitatively correct. Measured spectra contain emission lines due to
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the quantization of electron energy levels. The Planck distribution is continuous and does
not include discrete features like emission lines, which would appear as vertical lines in an
emission spectrum6.

Figure 1.2: Planckians at plausible temperatures for clothing and skin.

The distribution corresponding to the right vertex in Fig. 1.1 is the Maxwell distribution
of matter particle velocities,

f(v) = 4πv2
( m

2πkT

) 3
2
e−

1
2
mv2/kT . (1.2)

The left vertex distribution is the Boltzmann distribution for the relative populations of
electronic excitation states,

n2

n1

=
g2
g1
e−hν/kT . (1.3)

The three distributions Eqs. (1.1) to (1.3) have an important common quality besides tem-
perature parameterization: each distribution describes the way that energy is distributed
among the constituent particles of the three energy reservoirs. Finally, Eq. (1.3) is insuffi-
cient for ionized matter, but it can be augmented by incorporating an equation contributed
by M. Saha7 called the Saha ionization equation,

ni+1ne

ni

= 2
Zi+1

Zi

(
2πmekT

h2

)3/2

e
−χi
kT . (1.4)

The combination of Eq. (1.3) and Eq. (1.4) is called the Saha-Boltzmann distribution.
6An example plot showing line emission in an emission spectrum can be seen in Figure 8.1 of [2].
7Meghnad Saha (1893-1956) was an Indian physicist.
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1.1.2 Hot Dense Plasma

While the constituent particles of the radiation energy reservoir are photons, the constituent
particles of the other two reservoirs are ions and free electrons, because the matter that
TRT describes is hot enough that molecular bonds have been broken and atoms have been
stripped of one or more of their bound electrons. The matter is a hot plasma. Additionally,
the plasma is dense, meaning that collisions between the matter particles are the dominant
process for populating the excitation states with excited ions. Collisional processes dominate
radiative processes, meaning that the center leg of the energy reservoir triangle in Fig. 1.1
dominates the left leg. This restricts the region of applicability to the upper-right portion of
the plasma temperature-density plane8. Most matter in the observable universe is plasma,
but not all plasmas are hot and dense.

The temperature of a plasma is often described using more than a single value. A common
approach is to use a two-temperature model, which has separate temperatures for the ions, Ti,
and the free electrons, Te. A two-temperature model can capture plasma dynamics occurring
on timescales that are shorter than the timescale required for collisional equilibration of the
ions and the free electrons. It can also reproduce the physical phenomenon in which the free
electrons gain or lose energy much faster than the ions, because the mass of an electron is
much smaller than the mass of an ion. In a fully-ionized hydrogen plasma, where each ion is
just a single proton, an electron is about 1,800 times lighter than an ion. Plasmas containing
elements which are heavier than hydrogen have even higher ion-electron mass ratios. Finally,
external energy sources such as lasers preferentially heat electrons, thereby causing Te to rise
faster than Ti, which is an important physical phenomenon that a two-temperature plasma
model can reproduce, but a single temperature plasma model cannot.

Discussions of multi-temperature plasma models sometimes include references to a ra-
diation temperature, Tr. Unlike ions and electrons, photons are not constituent plasma
particles. However, the ion and electron temperatures are often used to communicate the
amount of energy in the ion and electron fluids, respectively, and a radiation temperature
would be useful for communicating the amount of energy in the photon fluid. Such a quantity
may be computed by simply solving for Tr in the Stefan-Boltzmann law,

u = aT 4
r , (1.5)

where u is the energy density of the radiation field, and the radiation constant a is four times
the ratio of the Stefan-Boltzmann constant and the speed of light, a = 4σ/c.

To simplify the presentation of the TRT equations, I assume that the plasma temperature
can be described by a single value, and I also refer to this plasma temperature as the “matter
temperature” and the “material temperature” in an interchangeable manner. It is this single
temperature that we use to evaluate Eqs. (1.1) to (1.4). Thus, the matter emission in TRT is
a Planckian at the matter temperature. Furthermore, the partial integro-differential equation
coefficients known as opacities, which appear in the TRT equations, can be expressed in terms

8An example plane can be seen on the first page of Chapter 8 “Physics of Hot Dense Plasmas” in [2].
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of the matter temperature. The opacities also depend on the plasma electron number density
(or mass density) and photon frequency. The temperature dependence of the opacities means
that there is no need to solve for the populations of the ion excitation states because the
validity of a matter temperature permits the populations to be determined by evaluating the
Saha-Boltzmann distribution at the matter temperature. Opacities are also sometimes called
reaction cross sections and mass attenuation coefficients. The opacities in my description of
the TRT equations have dimensions of inverse length.

Astrophysical and laboratory plasmas which are not collisionally dominated, either be-
cause they are insufficiently dense or because the radiation is very strong, require a more
sophisticated treatment. One approach is to augment the TRT system with additional equa-
tions describing the populations of the ion excitation states9. One uses the populations to
compute the (non-Planckian) emissivity and opacity. Such treatments can be expensive.
They exceed the scope of this dissertation.

Cold plasmas, meaning plasmas with temperatures that are so low that the plasma emis-
sion is too weak to change the plasma dynamics, may not require TRT. A linear radiation
transport equation could be sufficient. However, if the “external” radiation source is strong
enough, and the illumination timescale is long enough, the cold plasma could become hot.
The likelihood of heating would also depend on the optical thickness of the cold plasma at
the frequency of illumination. If there are no external radiation sources, then even linear
radiation transport may be unnecessary, since there is no radiation (except for the negligibly
weak emission from the cold plasma). Matter which is very cold may not even be a plasma,
but rather a gas, liquid, or solid. These cold matter types do not require TRT due to weak
emission resulting from the low matter temperature required to sustain neutrality.

Hot dense plasmas are bright sources of extreme ultraviolet and soft x-ray radiation, which
is an ideal spectral band for TRT modeling. Extrapolating away from this band in either
direction can introduce physics which TRT does not incorporate. At longer wavelengths, the
TRT equations may be inadequate because they do not incorporate electromagnetic wave
behaviors, like diffraction, which become more evident at longer wavelengths. Some wave
effects can be reincorporated; one example is polarization10. At shorter wavelengths, the
TRT equations may be inadequate because they do not consider photonuclear effects.

Finally, because TRT has a matter temperature, it can only describe plasmas containing
many particles. A system of very few particles, for which the statistical properties under-
pinning the kinetic theory of gases are violated, would preclude the use of temperature (it
makes no sense to describe the velocities of two ions using a Maxwellian). TRT models a
continuous mass of matter, not discrete matter particles, and so a microscopic description
which considers the velocity of each particle would be more useful for a plasma comprised
of few particles. Examples include the particle-in-cell method and molecular dynamics.

9See Chapter 9 “Spectral line transport” in [3].
10See Chapter 4 “The Representation of Polarized Light in the Equation of Transfer” in [4].
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1.2 Equations of Thermal Radiative Transfer

Radiative transfer refers to an equation for computing the radiation specific intensity, I,
which is a scalar. It is high dimensional relative to other commonly encountered quantities in
computational physics and engineering. The independent variables of continuum mechanics
disciplines like solid mechanics and fluid mechanics are often four dimensional through space-
time dependence. Examples include position, velocity, energy, temperature, and pressure.
Radiation specific intensity is higher dimensional because it includes frequency and angle
dependence, which makes it seven dimensional. Frequency contributes a single dimension
while angle contributes two. This is because every angle in space can be expressed as a
unit vector, Ω, directed at locations on the unit sphere, and two coordinates are required
to specify every location on the unit sphere. Thus, we may write I = I(x,Ω, ν, t), which
identifies the seven dimensions of the radiation specific intensity phase space.

A useful interpretation of the meaning of I is through its relationship to the photon phase
space number density. Let f(x,Ω, ν, t) denote the number of photons in the phase space
element dx dΩ dν at time t. Then I = chνf . This relation reveals that I is a type of power,
or energy per time. The dimensions of f can be expressed as,

[f ] =
#

cm3 sr Hz
, (1.6)

and the dimensions of I can be expressed as,

[I] =
energy

cm2 sr Hz s
. (1.7)

The energy in the numerator of Eq. (1.7) is due to the energy of the photons (E = hν) which
constitute the radiation. We can integrate to reduce I to just energy per time, or power.
Before integrating we multiply by the absorption opacity σa which has dimensions of inverse
length. The result is the power deposited in the matter by its absorption of radiation,

∫

D

∫

S2

∫ ∞

0

σaI dν dΩdx . (1.8)

The radiative transfer equation says that the rate of change of the radiation specific
intensity is equal to the sum of the gains and losses,

(
1

c

)
∂I

∂t
+Ω · ∇I = j − kI . (1.9)

The first term is the rate of change, the second is loss due to movement of photons out of the
phase space volume element, the third is gain from emission due to an emissivity j, and the
fourth is loss from absorption due to an absorptivity k. If a plasma is insufficiently dense,
or the radiation is sufficiently strong, such that radiative processes rather than collisional
processes are the dominant process for populating the excitation states with excited ions,
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then one must solve Eq. (1.9) to determine I. Otherwise, thermal radiative transfer can be
substituted for radiative transfer, which greatly simplifies the specification of j and k.

The prefix “thermal” in TRT is a constraining qualification. Section 1.1.2 articulates
the physical context of this constraint. Mathematically, it means that one can make the
substitutions j = σaB and k = σa, giving(

1

c

)
∂I

∂t
+Ω · ∇I = σa(B − I) . (1.10a)

Eq. (1.10a) is the first TRT equation. Its expression here disregards photon scattering
processes, which contribute gain and loss terms for photons scattering into and out of phase
space, respectively. Photon scattering can be incorporated by including extra terms [4].
Eq. (1.10a) contains the Planck distribution B, but says nothing about the temperature at
which to evaluate it. With what temperature does one evaluate Eq. (1.1) for B?

Recall the energy reservoir triangle in Fig. 1.1 where we had one radiation energy reservoir
(center vertex) and two matter energy reservoirs (left and right vertices). Imagine reducing
the length of the triangle’s center edge to zero, thus transforming two vertices into one
and merging the matter energy reservoirs. The energy in the matter is now due to both
electronic excitation and kinetic motion (and possibly other energy reservoirs). The matter
energy reservoir encapsulating all matter energy sources is sometimes referred to as the
matter “internal” energy.

Modeling this dyad of energy reservoirs, one reservoir for the radiation and one for the
matter, requires an equation for the rate of change of the matter temperature. The matter
temperature equation says that the rate of change of the matter temperature is equal to the
sum of the gains and losses,

∂Um

∂t
= ρcv

∂T

∂t
=

∫

S2

∫ ∞

0

σa(x, ν
′, T )

(
I(x,Ω′, ν ′, t)−B(ν ′, T )

)
dν ′ dΩ′ . (1.10b)

Eq. (1.10b) is the second TRT equation. The two unknowns in Eqs. (1.10a) and (1.10b) are
the seven-dimensional radiation intensity I = I(x,Ω, ν, t) and the four-dimensional matter
energy density Um = Um(x, t) or matter temperature T = T (x, t). The TRT system is the
system of two equations Eqs. (1.10a) and (1.10b) along with the initial conditions,

I(x,Ω, ν, 0) = I i(x,Ω, ν) , (1.10c)

T (x, 0) = T i(x) , (1.10d)

and the boundary condition,

I(x,Ω, ν, t) = Ib(x,Ω, ν, t) for x ∈ ∂D and Ω · n < 0 . (1.10e)

Eq. (1.10e) is sometimes called an “inflow” boundary condition because it specifies the value
of the radiation intensity on the domain boundary in the subset of directions which point
into the domain. The radiation intensity on the domain boundary in the outward facing
directions, designated by Ω · n > 0, is not specified by the boundary condition because it is
governed by the TRT system and therefore must be computed. The TRT system is nonlinear
due to the Planck emission term B.
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1.3 Methods for Thermal Radiative Transfer

Methods for solving the TRT equations typically linearize the system about a timestep.
Linearization produces a system of linear equations which have a solution that is a useful
approximation of the TRT solution. Linearization, and then computing the solution of the
linear system, is an important component of many iterative methods for solving systems of
nonlinear equations, such as Newton-Raphson and fixed-point iteration. My novel hybrid
method uses the implicit Monte Carlo linearization of Fleck and Cummings [5]. I describe
implicit Monte Carlo (IMC) in section 1.3.1 and the properties of the resulting linear system
in section 1.3.2. I also describe deterministic (section 1.3.3), Monte Carlo (section 1.3.4),
and moment methods (section 1.3.5) for solving the linear system.

1.3.1 Implicit Monte Carlo Linearization

I designed my novel hybrid method for solving the linear transport equation that arises from
the implicit Monte Carlo linearization of Fleck and Cummings [5]. IMC makes approxima-
tions which allow one to replace the problem of solving the nonlinear TRT equations with the
simpler problem of solving a linear transport equation. Thus, the IMC linearization is the
connection between my method, which solves linear transport, and my intended application,
which is TRT.

Below, I write the IMC equations using the notation from Wollaber [6]. I then intro-
duce my model problem, which is a linear transport equation, and show the correspondence
between terms in the IMC equations and my model problem. The IMC equations are a
linearization of the TRT Eqs. (1.10a) and (1.10b) about a single timestep11:

In+1 − In
c∆t

+Ω · ∇In+1 + σnIn+1 =
σnbn
σp,n

1

4π

∫ ∞

0

∫

S2
(1− fn)σnIn+1 dΩ

′ dν ′

+ fnσp,n
σnbn
σp,n

cUr,n

4π
+ (1− fn)

σnbn
σp,n

Qm

4π
+
Qr

4π
, (1.11a)

Um,n+1 − Um,n

∆t
+ fnσp,ncUr,n =

∫ ∞

0

∫

S2
fnσnIn+1 dΩ

′ dν ′ + fnQm. (1.11b)

See Physics Symbols, Math Symbols, Finite Element Symbols, and Monte Carlo Symbols in
the front matter for definitions of the symbols in Eqs. (1.11a) and (1.11b) and all subsequent
equations in this dissertation. The n subscript in Eqs. (1.11a) and (1.11b) denotes a quantity
evaluated at time tn. The time discretization in Eqs. (1.11a) and (1.11b) replaced the
time derivatives ∂I/∂t and ∂Um/∂t in Eqs. (1.10a) and (1.10b) with (In+1 − In)/∆t and
(Um,n+1 − Um,n)/∆t, respectively. The quantity ∆t is the timestep. The IMC Eqs. (1.11a)
and (1.11b) converge to the TRT Eqs. (1.10a) and (1.10b) in the limit of an infinitely small
timestep.

11For a good derivation of the IMC equations, read [6] starting at the first equation and ending with
equations 24a and 24b. The original IMC presentation is in Fleck and Cummings [5].
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Eqs. (1.11a) and (1.11b) are subject to the same initial conditions Eqs. (1.10c) and (1.10d)
and boundary condition Eq. (1.10e) as the TRT system of Eqs. (1.10a) and (1.10b). The
unknowns in Eqs. (1.10a) and (1.10b) are the intensity I and the material energy density
Um, whereas the unknowns in Eqs. (1.11a) and (1.11b) are these quantities at time tn+1: In+1

and Um,n+1. One important difference between the IMC linearization and the TRT system is
that Um,n+1 can be computed explicitly after solving Eq. (1.11a) for In+1. Note that “IMC”
could be considered a misnomer, because Eqs. (1.11a) and (1.11b) are only semi-implicit.
Solving the IMC Eqs. (1.11a) and (1.11b) is equivalent to taking a single step of Newton’s
method applied to the nonlinear TRT Eqs. (1.10a) and (1.10b). A fully-implicit method
would converge the Newton iteration at every timestep, which would be very expensive,
but such a method would be unconditionally stable. The semi-implicit formulation provides
just enough stability to be useful, meaning that the timestep size threshold at which IMC
becomes unstable is not impractically small. An explicit method would be either unstable or
conditionally stable, in which case the restriction on the timestep size required for stability
would be severe. Unstable methods can give inaccurate or even completely meaningless
results because of exponential or uncontrollable growth of small errors12.

One notable feature of the IMC equations is the presence of “effective scattering”, which
differs from physical scattering. In physical scattering, a photon interacts with an electron
through a collision without being absorbed. As a result, the photon emerges from the
collision, typically traveling in a different direction and possibly with a different energy than
it had prior to the interaction. Even when physical scattering is disregarded, as I have
done in this dissertation (because I did not include physical scattering terms in the TRT
Eqs. (1.10a) and (1.10b)), the IMC linearization always results in an effective scattering
term. The effective scattering term is the first term on the right-hand side of Eq. (1.11a). It
is a source term which accounts for the effective scattering of IMC photons into the phase
space. If an IMC photon undergoes an effective scattering event, it means that the physical
photon it represents was absorbed and re-emitted within the timestep.

The form of the “Fleck factor”,

fn =
1

1 + ασp,nc∆t
, (1.12)

shows that optically-thick media and large timesteps cause fn ∈ (0, 1) to decrease, increasing
the amount of effective scattering (1 − fn) relative to effective absorption fn. Effective
scattering can be expensive, especially in the thick diffusion limit, which is a regime that
I describe in section 1.3.2. My hybrid method is a novel way to mitigate the expense of
calculations with a high amount of effective scattering.

Both deterministic and Monte Carlo methods can be used to solve the IMC system
of Eqs. (1.11a) and (1.11b). Deterministic methods solve the linear transport Eq. (1.11a)
deterministically for I, then evaluate it in a quadrature rule to compute the integral in the

12Numerical methods have small errors due to discretization and finite precision arithmetic, which may
require rounding the results of arithmetic operations required by the method.



12

temperature update Eq. (1.11b). By contrast, Monte Carlo methods use random numbers
to compute the integral in Eq. (1.11b) by accumulating an estimator for the angle integrated
intensity. I define estimators, their accumulation, and other Monte Carlo method concepts
in Chapter 3.

The fundamental quantity in deterministic methods is the intensity I, whereas the fun-
damental quantity in Monte Carlo methods is the energy-weight w, which is the amount of
energy represented by an IMC photon. An IMC photon with energy-weight w and frequency
ν represents w/hν ∈ R+ physical photons if w ∈ R+. The number of physical photons
represented by an IMC photon is not necessarily an integer. It is usually a positive number,
though some algorithms allow for w < 0.

1.3.2 Linear Transport

Eq. (1.11a) is a linear transport equation. If one integrates both sides of Eq. (1.11a) over all
frequencies, then a single timestep of the resulting equation can be expressed more simply
as,

Ω · ∇ψ + σtψ =
σs
4π

∫

S2
ψ dΩ′ + q , (1.13a)

subject to the boundary condition,

ψ(x,Ω) = ψ̄(x,Ω) , x ∈ ∂D and Ω · n < 0 . (1.13b)

This is the model problem from [7]. It is the problem that I solve with my hybrid method.
Typically, time and frequency are discretized into timesteps and frequency groups, so TRT
using the IMC linearization requires solving a linear transport equation like Eq. (1.13a) for
all timesteps and frequency groups. The number of timesteps required to reach the physical
time of interest depends on the timescale of the physics under study and the accuracy
requirements of the application. Thousands of timesteps is not atypical. An ambitious TRT
calculation may run for one hundred thousand timesteps, but one million or more timesteps
would be unusual for TRT. The number of frequency groups required for an accurate model is
problem-dependent and can range from one to tens of thousands. Even though Eq. (1.13a) is
a five-dimensional problem, whereas Eq. (1.11a) is seven-dimensional, it still retains sufficient
complexity to demonstrate solution methods which could be useful for the full-dimensional
problem.

The left-hand sides of Eq. (1.11a) and Eq. (1.13a) are identical but for the time derivative,
which is handled by the time-stepping procedure prescribed by IMC. The four terms on the
right-hand side of Eq. (1.11a) are effective scattering, effective emission, material emission,
and external sources. The first term on the right-hand side of Eq. (1.13a) serves as a proxy
for effective scattering. The second term on the right-hand side of Eq. (1.13a) serves as a
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proxy for the other three. That is,

σs
4π

∫

S2
ψ dΩ′ imitates

σnbn
σp,n

1

4π

∫ ∞

0

∫

S2
(1− fn)σnIn+1 dΩ

′ dν ′ ,

q imitates fnσp,n
σnbn
σp,n

cUr,n

4π
+ (1− fn)

σnbn
σp,n

Qm

4π
+
Qr

4π
.

The linear transport Eq. (1.13a) can exhibit properties of either parabolic or hyperbolic
equations, depending on the physical regime, which poses challenges for designing effective
numerical schemes. In transport-dominated regimes, such as problems where the phase
space is almost entirely optically-thin, the behavior of the linear transport Eq. (1.13a) is
more hyperbolic, like an advection equation. In optically-thick problems, the behavior is
more parabolic, like a diffusion equation.

1.3.3 Deterministic Methods for Linear Transport

Deterministic methods for solving linear transport discretize seven dimensional phase space,
compute the solution at the finite set of points in phase space, then interpolate to reconstruct
a continuous solution. The set of points can be large because it contains the product of
points along each dimension, so a discretization which uses ten points in each dimension
will produce a solution vector containing 107 entries. This means that the coefficient matrix
representing the discretized equations has dimensions 107×107, or 1014 entries. If one uses the
conventional 8-bytes of computer memory to store each entry, then the storage requirement
approaches one petabyte, or 1015 bytes. This is three orders of magnitude more than the
memory capacity of the highest memory capacity computers commonly available today.

Discrete Ordinates (SN) is a popular class of deterministic methods that uses angular
quadrature to discretize angle. The choice of space, energy, and time discretizations can vary
among SN implementations. Common choices are finite volume, multigroup, and backward
Euler, respectively. Production SN methods typically overcome the limitation of insufficient
computer memory capacity by employing source iteration (SI) [8]. SI lags the scattering term.
This allows the solution along each direction to be computed independently. Furthermore,
the global coefficient matrix associated with the spatial discretization for a single direction
is block triangular, or nearly so, and is never stored13. Instead, the system is solved by
picking an angle and solving a small14 linear system in a boundary element, choosing an
adjacent element in the direction of the chosen angle and solving the element-local system,
and so on in a process known as a “transport sweep.” This is sometimes called a “wavefront
solver” because the solution is determined progressively along a wavefront emanating from
the starting element. When the sweep completes, one computes a new estimate of the
scattering source, and the iteration cycle is complete. The iteration terminates when a
convergence criterion is satisfied.

13For example coefficient matrix sparsity plots, see Figure 5.4 (a) and (b) in [7].
14A linear discontinuous spatial discretization would have 8 × 8 element-local systems in three spatial

dimensions because 2dim = 23 = 8, quadratic would have 27× 27 because 3dim = 33 = 27, and so on.
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SI solves the problem of finite computer memory capacity by obviating the need to store
the coefficient matrix. However, it suffers from arbitrarily slow convergence in the thick
diffusion limit (TDL)15. Consider the linear transport equation,

Lψ = Sψ + q , (1.14)

where L = Ω · ∇+ σt and S = σs

4π

∫
ψ dΩ′. The SI method is

Lψ(i+1) = Sψ(i) + q , (1.15)

where i is the iteration index. The spectral radius of L−1S is bounded by unity, but gets
arbitrarily close to unity in the TDL, meaning that the number of iterations required to
converge grows without bound. Perhaps the earliest method used in production calculations
in the United States to accelerate the convergence of SI, which remains in use today, is called
diffusion synthetic acceleration (DSA) [10, 11]. A method called quasi-diffusion, or Variable
Eddington Factor, which converges quickly even in the TDL, was also invented around the
same time as DSA, but received less attention perhaps because it originated in the Soviet
Union [12]. SI acceleration methods, like DSA, and other methods that converge quickly,
like quasi-diffusion, use ideas from the radiation diffusion approximation, which I describe
in section 1.3.5. For a comparison of SI acceleration methods, see [13].

1.3.4 Monte Carlo Methods for Linear Transport

Monte Carlo methods for solving linear transport use a random sample of photon histories to
compute an estimator for the angle integrated intensity. I define estimators in Chapter 3. A
photon history is the sequence of events undergone by a simulation photon. Events include
emission, scattering, and absorption. Random numbers and physical properties of the matter
determine the quantity and type of events that constitute the histories.

Monte Carlo algorithms sample points in phase space which are used to initialize the pa-
rameters of simulation particles in a process called sourcing. After sourcing, the photons are
tracked through the matter until they are absorbed, escape the problem geometry through a
vacuum boundary, or reach the end of the timestep. Monte Carlo photons used to compute
the solution of the linear transport equation arising from the IMC linearization are some-
times called “IMC photons”. If an IMC photon undergoes an effective scattering event, the
corresponding physical photon was absorbed and reemitted within the timestep. However,
it is important to note that the extent to which an IMC photon—a numerical artifact—can
be considered representative of a physical photon is a topic of debate in the IMC method
literature.

The arbitrarily slow convergence of source iteration, described in section 1.3.3, has a
Monte Carlo equivalent. In the TDL, the probability that an effective scattering event is the

15The TDL [9] is a numerically challenging physical regime characterized by high optical thickness and
high amounts of particle scattering. In Section 1.3.6, I present the asymptotic scaling of the transport
problem data which characterizes the TDL, along with a discussion of its consequences.
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next event that an IMC photon undergoes becomes arbitrarily close to unity. This causes
IMC photon histories to grow without bound. A typical history might have a simulation
particle move a tiny distance, undergo an effective scattering event which changes its direc-
tion, move a tiny distance, undergo another effective scattering event, and so on, hundreds
or thousands or millions of times. Each event in the IMC photon history contributes very
little to the Monte Carlo estimator, just like each iteration of SI contributes very little to
the SN solution in the TDL.

Also, just like incorporating ideas from the radiation diffusion approximation can ac-
celerate the convergence of SI by reducing the number of iterations required to converge,
incorporating diffusion ideas can accelerate MC calculations by reducing the length of the
IMC photon histories. Perhaps the first technique invented, called random walk (RW), allows
IMC photons to be moved to the edge of a sphere inscribed in the spatial mesh, provided
that certain conditions are satisfied [14]. More recently invented acceleration techniques
include implicit Monte Carlo diffusion (IMD) and discrete diffusion Monte Carlo (DDMC).
Both replace transport zones with diffusion zones in optically-thick materials and solve a
linear system arising from a discretization of the diffusion equation using a Monte Carlo
interpretation [15–19].

My novel hybrid method can be viewed as an alternative MC acceleration technique.
For my method to be useful, it needs to outperform the aforementioned existing techniques,
which have some weaknesses. The use of diffusion descriptions in RW, IMD, and DDMC
introduces modeling error because the diffusion equation is an approximation of the transport
equation, though the error of the approximation goes to zero in the infinitely optically-thick
limit. Regimes with intermediate optical thickness highlight the tradeoff inherent to all
three methods: either sacrificing accuracy by using diffusion or sacrificing speed by using
transport.

Additionally, the acceleration of RW is diminished by spatial mesh refinement because
the maximum distance that an IMC photon can travel in a single RW step is constrained
by the size of the maximum sphere that may be circumscribed in the zone. The IMD and
DDMC methods have yet to be extended to unstructured meshes; however, researchers at
laboratories such as Los Alamos National Laboratory (LANL) are actively working on this.
For now, IMD- and DDMC-accelerated IMC calculations cannot use meshes which have
been distorted by mesh motion, which is an inevitability when one solves the Lagrangian
hydrodynamics equations. The Eulerian hydrodynamics equations do not have mesh motion,
but the Eulerian representation introduces error due to mass advection caused by fluid flow
across the stationary mesh. If one insists on coupling IMC photonics with a Lagrangian
hydrodynamics representation, and also wants IMD or DDMC acceleration, then one must
perform an expensive mapping operation, which transfers all of the necessary program state
from the unstructured hydrodynamics mesh to a structured radiation transport mesh and
back every timestep. The transfer operation is neither free nor exact. Research on extending
IMD and DDMC to unstructured meshes aims to efficiently address the challenges inherent
to unstructured meshes, rather than relying on mesh transfers to circumvent these issues.
This is because the cost and approximation errors associated with the transfer operation are
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significant enough to make it impractical.
One notable strength of Monte Carlo for solving the linear transport equation is that it

can provide higher solution quality than SN for a fixed amount of time and resources when
calculations require many photon energy groups. Increasing the number of groups increases
the runtime of MC much more slowly than SN , because the SN problem size is multiplicative
in the number of groups. The MC problem size is multiplicative in the number of MC
particles and the number of spatial elements, but it is not multiplicative in the number of
photon energy groups.

MC also avoids angular discretization errors, known as ray effects, which can create un-
physical starburst patterns in SN solutions. Finally, MC solutions can never be negative,
as long as the energy-weights of the IMC photons are non-negative, which is easily ensured
by MC algorithms. This contrasts with SN sweeps, which can produce unphysical nega-
tive solutions. Non-negativity follows from the properties of the TRT equations, specifically
the fact that the physical photon number density cannot be negative, and so the radiation
specific intensity also cannot be negative. Negativity in deterministic methods arises from
under-resolution in the discretization, for example when the solution has substantial varia-
tion within a mesh element. If there is substantial intra-element solution variation, neither
high-order nor low-order methods are accurate, but lower-order methods can avoid negativi-
ties. Deterministic methods which use techniques to preserve positivity can be less accurate
than nonpositive schemes due to a fundamental tradeoff between positivity and accuracy
[20]. Positivity-preserving schemes often try to limit to low-order methods in under-resolved
regions, and high-order methods when resolved.

The strengths of Monte Carlo are compensation for its two main weaknesses. The first
is random variability, also known as statistical noise. The MC noise can severely diminish
solution quality compared to SN . The second is convergence order. Spatial discretizations
for SN can be arbitrarily high-order, providing favorable convergence orders with respect to
the spatial mesh element width. For example, doubling the number of spatial elements would
decrease the spatial discretization error for a quadratic method by a factor of four, and a
cubic method by a factor of eight. This compares favorably with Monte Carlo convergence
order which has an unfavorable dependence on the number of MC photons. For example,
increasing the number of MC photons by a factor of four would only reduce the noise in the
MC estimator by a factor of two.

Noise can be ameliorated but never eliminated. Many Monte Carlo calculations employ a
variance reduction technique called survival biasing, and other variance reduction techniques
are often helpful too [21]. Another noise amelioration strategy uses quasi-random numbers
instead of pseudorandom numbers [22]. An example of one such low-discrepancy sequence
is the Halton sequence [23]. Its use improves the MC convergence order: a factor of two
decrease in MC noise would require only a factor of two increase in MC photons, not a factor
of four increase. Noise complicates hybrid methods which combine MC with deterministic
methods. In the worst cases, a noisy quantity computed with MC is differentiated, which
causes noise amplification. Hybrid methods with noise amplification may be unusable.
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1.3.5 Moment Methods for Linear Transport

Moment methods are a rich source of useful numerical methods applied to a variety of
problems in various scientific fields [24]. Moment methods are derived by taking moments of
the governing equations of the system under study. Mathematically, a moment is an integral,
where the integration is performed with respect to a variable in the governing equations.
Moment methods often take multiple moments and apply a closure because the resulting
moment system is typically unclosed. An unclosed system of equations has more unknowns
than equations. A closure provides more equations. If a closure provides enough equations
to close the system, then the system is closed, meaning that it has as many equations as
unknowns.

The term “closure” is sometimes used synonymously with “approximation” because clo-
sures often involve introducing approximations to the continuous equations. In part i) below,
the closures are indeed approximations. However, in part ii), the closures are not approxima-
tions. Instead, they are exact in the continuous equations and only become approximations
after discretization. I use the terms “closure approximation” and “exact closure” to distin-
guish between these two situations.

Two reasons to take moments of an equation are: i) to derive new equations which ap-
proximate the original equation by using a closure approximation, and ii) to derive new
equations which are an equivalent reformulation of the original equation by using an ex-
act closure. The resulting equations can be easier to solve than the original equation. I
demonstrate cases i) and ii) with four examples, two for each case. The fourth example is
the system of equations which I solve in the deterministic component of my novel hybrid
method.

i) Deriving approximating equations

The first example takes moments to derive the Euler and Navier-Stokes equations of hydro-
dynamics. The Boltzmann equation for the particle number density f = f(x,v, t) is,

∂f

∂t
+ v · ∇f +

F

m
· ∇vf =

(
∂f

∂t

)

collision

. (1.16)

In Eq. (1.16), m is the particle mass and ∇v is the gradient in velocity space. The force
term F accounts for any forces acting on the particles, while the collision term (∂f/∂t)collision
describes the effects of collisions. These forces and collisions can occur either between the
particles themselves or between the particles and a surrounding medium. In systems with
significant collective effects, such as plasmas or self-gravitating systems, inter-particle forces
are typically included in the force term. Conversely, in systems without collective effects,
inter-particle forces are instead incorporated into the collision term.

An example of a force is the gravitational force, F = −m∇Φ, wherem is the particle mass,
and Φ = −GM/r is the gravitational potential for a point mass M at a distance r, with G
being the gravitational constant. Another example is the Coulomb force, F = q(E+v×B),
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where E is the electric field and B is the magnetic field. If the electric field E and the
magnetic field B arise from external forces—that is, forces not generated by the particles
described by Eq. (1.16)—their effects are included in the force term. Otherwise, their effects
are accounted for in the collision term.

Taking the zeroth, first, and second mass-weighted velocity moments of Eq. (1.16) yields
a system of five equations. One equation describes mass conservation, three describe momen-
tum conservation, and one describes energy conservation. The system is unclosed because it
has more unknowns than equations. Closing the system using a closure approximation which
assumes that the material particle velocity distribution is Maxwellian, produces the inviscid
Euler equations. An alternative closure approximation known as the Chapman-Enskog ex-
pansion produces the Navier-Stokes equations [25]. The Euler and Navier-Stokes equations
are referred to as “continuum equations” because they model a continuous mass of matter
in which the individual particles which constitute the matter cannot be distinguished. In
contrast, Eq. (1.16) models the behavior of individual particles. The continuum equations
serve as approximations of the particle-based model.

The second example takes moments to derive the radiation diffusion approximation.
First, define the angle integrated intensity ϕ, the current J , and the pressure P as the
zeroth, first, and second angular moments of the intensity ψ,

ϕ(x) =

∫

S2
ψ(x,Ω) dΩ , (1.17)

J(x) =

∫

S2
Ωψ(x,Ω) dΩ , (1.18)

P(x) =

∫

S2
Ω⊗Ωψ(x,Ω) dΩ . (1.19)

Now take the zeroth and first angular moments of Eq. (1.13a) to get,

∇ · J + σaϕ = Q0 , (1.20a)

∇ ·P+ σtJ = Q1 , (1.20b)

where Q0 and Q1 are the zeroth and first angular moments of the fixed source q. The system
of Eqs. (1.20a) and (1.20b) is unclosed because it has ten unknowns and only four equations:
one radiation relative mass (energy) conservation equation and three radiation momentum
conservation equations. The independent variables ϕ, J , and P consist of 1+3+6=10 un-
knowns because they are a scalar, vector, and symmetric tensor, respectively. The closure
approximation that leads to the radiation diffusion approximation assumes that ψ is a lin-
early anisotropic function that can be written,

ψ(x,Ω) =
1

4π
(ϕ(x) + 3Ω · J(x)) . (1.21)
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Eq. (1.21) is a spherical harmonics expansion truncated at the linear term, thus only the
constant and linear terms persist. Evaluating Eq. (1.19) using Eq. (1.21) leads to Eddington’s
approximation,

P =
1

3
ϕI . (1.22)

Substituting Eq. (1.22) into Eq. (1.20b) gives,

1

3
∇ϕ+ σtJ = Q1 . (1.23)

Derive a boundary condition by defining J±
n =

∫
Ω·n≷0

Ω · nψ dΩ and performing algebraic
manipulation,

J · n = J−
n + J+

n

= 2J−
n + (J+

n − J−
n )

= 2J−
n +

∫

S2
|Ω · n|ψ dΩ . (1.24)

Defining

B(ψ) =

∫

S2
|Ω · n|ψ dΩ , (1.25)

and

Jin =

∫

Ω·n<0

Ω · n ψ̄ dΩ , (1.26)

and substituting into Eq. (1.24) gives the unclosed boundary condition,

J · n = B(ψ) + 2Jin . (1.27)

Substituting the closure approximation Eq. (1.21) into B(ψ) gives,

B(ψ) =

∫

S2
|Ω · n|ψ dΩ

=
1

4π

∫

S2
|Ω · n|(ϕ+ 3Ω · J) dΩ

=
1

4π
(ϕ

∫

S2
|Ω · n| dΩ + 3

∫

S2
|Ω · n| Ω · J dΩ)

=
1

4π
(2πϕ+ 0)

=
ϕ

2
. (1.28)

Substituting the above result into Eq. (1.27) gives the radiation diffusion boundary condition,

J · n =
ϕ

2
+ 2Jin . (1.29)
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The Eqs. (1.20a), (1.23) and (1.29) together form the radiation diffusion approximation
system. Using Eq. (1.23) to solve for J in terms of ϕ, and substituting this expression for J
into Eq. (1.20a), gives the second order form of the radiation diffusion approximation,

−∇ · 1

3σt
∇ϕ+ σaϕ = Q0 −∇ ·

Q1

σt
. (1.30)

The first order form has four unknowns and four equations. The second order form has only
one equation and one unknown. Radiation diffusion is an approximation of Eqs. (1.13a)
and (1.13b) because if ψ is more than linearly anisotropic (e.g. quadratic, cubic, etc.) then
the solution to Eqs. (1.29) and (1.30) disagrees with Eq. (1.17). This is not true of the next
two examples, which are equivalent reformulations of Eqs. (1.13a) and (1.13b).

The radiation diffusion approximation, when expressed in its first order form, is commonly
referred to as the P1 equations or the P1 approximation. The term “P1” refers to the linear
term in the spherical harmonics expansion, which is the term at which we truncate the
expansion in Eq. (1.21). The P1 equations can also be written in time-dependent form. If
we had taken moments of the unsteady transport equation, and then applied the closure
approximation Eq. (1.21), we would have arrived at the unsteady P1 equations, which is the
system of Eqs. (1.20a) and (1.23) along with additional time derivative terms:

1

c

∂ϕ

∂t
+∇ · J + σaϕ = Q0 , (1.31a)

1

c

∂J

∂t
+

1

3
∇ϕ+ σtJ = Q1 . (1.31b)

The unsteady radiation diffusion approximation, expressed in its second order form, can be
derived from the unsteady P1 Eqs. (1.31a) and (1.31b) by making the approximation that
the time variation of the current J is much smaller than the spatial gradient of the angle
integrated intensity ϕ. That is, the first term in Eq. (1.31b) is much smaller than the second,

1

c

∂J

∂t
≪ 1

3
∇ϕ . (1.32)

Assuming Eq. (1.32) allows for the elimination of the current by substituting (1/c)∂J/∂t = 0
into Eq. (1.31b), solving for J in terms of ϕ, and then substituting the result into Eq. (1.31a),

1

c

∂ϕ

∂t
−∇ · 1

3σt
∇ϕ+ σaϕ = Q0 −∇ ·

Q1

σt
. (1.33)

Eq. (1.33) is a parabolic equation with a rich literature of numerical method development.
An important modeling issue with Eq. (1.33) is that it allows radiation to propagate faster
than the speed of light, which is an unphysical consequence of setting (1/c)∂J/∂t = 0. More
information, as well as solutions to Eq. (1.33) for example radiative transfer problems, may
be found in the manuscript by Brunner [26].
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ii) Deriving equivalent reformulations

The third and fourth examples, Variable Eddington Factor (VEF) and Second Moment
Method (SMM) arise from alternative choices for Eqs. (1.22) and (1.25). Unlike in part
i), where closure approximations were used, we now employ exact closures, avoiding any
approximations. As a result, the derived equations are equivalent reformulations of the
original equations.

Multiplying and dividing by the angle integrated intensity is the choice that leads to VEF.
The derivation of the VEF method begins by writing the following exact closure, which is
multiplicative in the angle integrated intensity, and is therefore a nonlinear equation,

P = Eφ . (1.34)

In Eq. (1.34), I switched my notation for the angle integrated intensity from ϕ (phi) to φ
(varphi) in order to be consistent with [7]. The quantity E is called the Eddington tensor,

E =

∫
S2 Ω⊗Ωψ dΩ∫

S2 ψ dΩ
. (1.35)

Substituting Eq. (1.34) into Eq. (1.20b) gives,

∇ · (Eφ) + σtJ = Q1 . (1.36)

Write another exact closure to close the boundary functional Eq. (1.25) in the same manner
as we did for Eq. (1.34). Specifically, multiply and divide by the angle integrated intensity,

B(ψ) = Ebφ , (1.37)

where

Eb =

∫
S2 |Ω · n|ψ dΩ∫

S2 ψ dΩ
(1.38)

is the Eddington boundary factor. Substituting Eq. (1.37) into Eq. (1.27) gives the VEF
boundary condition,

J · n = Ebφ+ 2Jin . (1.39)

The Eqs. (1.20a), (1.36) and (1.39) together form the VEF system. Using Eq. (1.36) to
eliminate J from the system gives the second order form of the VEF equation,

−∇ · 1
σt
∇ · (Eφ) + σaφ = Q0 −∇ ·

Q1

σt
. (1.40)

Instead of multiplying and dividing by the angle integrated intensity, we can add and
subtract it, which is the choice that leads to the SMM. The derivation of the SMM begins
by writing the following exact closure, which is additive in the angle integrated intensity,
and is therefore a linear equation,

P = T+
1

3
Iφ , (1.41)
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where

T =

∫

S2
Ω⊗Ωψ dΩ− 1

3
I

∫

S2
ψ dΩ (1.42)

is called the SMM correction tensor. Substituting Eq. (1.41) into Eq. (1.20b) gives,

1

3
∇φ+ σtJ = Q1 −∇ ·T . (1.43)

Write another exact closure to close the boundary functional Eq. (1.25) in the same way as
we did for Eq. (1.41). Specifically, add and subtract the angle integrated intensity,

B(ψ) = β +
1

2
φ , (1.44)

where

β(ψ) =

∫

S2
|Ω · n|ψ dΩ− 1

2

∫

S2
ψ dΩ (1.45)

is called the SMM boundary correction factor. Substituting Eq. (1.44) into Eq. (1.27) gives
the SMM boundary condition,

J · n =
1

2
φ+ 2Jin + β . (1.46)

The Eqs. (1.20a), (1.43) and (1.46) together form the SMM system. Using Eq. (1.43) to
eliminate J from the system gives the second order form of the SMM equation,

−∇ · 1

3σt
∇φ+ σaφ = Q0 −∇ ·

Q1

σt
+∇ · 1

σt
∇ ·T . (1.47)

The solutions to both Eq. (1.40) and Eq. (1.47) agree exactly with Eq. (1.17) because
Eqs. (1.34) and (1.41) are exact closures. In practice, we do not know ψ, so implementations
of VEF or SMM must simultaneously solve Eq. (1.13a) for ψ to compute the functionals E
and Eb or T and β, which are required to solve the VEF or SMM equations, respectively.

Discretization causes the VEF and SMM solutions to differ from the transport solution
by an amount that is on the order of the discretization error, which goes to zero in the limit
of a discretization with infinite resolution. A “consistent” discretization of VEF or SMM
is one in which the VEF or SMM solution is equal to the transport solution. Consistent
VEF and SMM discretizations have restricted flexibility in discretization choices compared
to VEF and SMM discretizations which are not consistent with the transport discretization.
Thus, consistency with transport can be achieved, albeit at the expense of flexibility in the
moment system discretization.
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1.3.6 Thick Diffusion Limit

Both deterministic and Monte Carlo methods can be used to solve the linear transport
equation that arises from the IMC linearization. Deterministic and Monte Carlo methods
commonly use source iteration (SI) and effective scattering events (ESE), respectively. Both
SI and ESE cause significant prolongation of calculation runtimes in the thick diffusion limit
(TDL). For SI, this is because the spectral radius of the streaming and collision operator L
in Eq. (1.14) approaches unity. For ESE, this is because the effective scattering probability
approaches unity. My hybrid method is a novel way to avoid ESE.

The TDL is a physical regime described mathematically by Larsen, Morel, and Miller
with the dimensionless scaling parameter ϵ ∈ (0, 1], which they used to scale the data in the
model problem as follows [9],

σt = 1/ϵ , (1.48a)

σa = ϵ , (1.48b)

σs = σt − σa , (1.48c)

q = ϵ . (1.48d)

The scaled model problem is thus,

Ω · ∇ψ +
σt
ϵ
ψ =

(σt
ϵ
− ϵσa

) 1

4π

∫

S2
ψ dΩ′ + ϵq . (1.49)

Larsen, Morel, and Miller show that the asymptotic solution to Eq. (1.49) for ϵ << 1 is,

ψ(x,Ω) = ϕ(x) +O(ϵ) , (1.50)

where ϕ(x) is defined by the equation,

−∇ · 1

3σt
∇ϕ+ σaϕ = q , (1.51)

which is the radiation diffusion approximation. Thus, when applied to the continuous trans-
port equation, the TDL analysis provides a mathematical justification for using the radiation
diffusion approximation in regions of phase space where ϵ << 1. Larsen, Morel, and Miller
also found that, when they applied their analysis to the discretized transport equation, they
could predict whether the solution of the discretized equation would remain accurate in
the TDL. Their analysis provided a theoretical explanation for empirical results obtained
with popular discrete ordinates spatial discretizations, such as diamond-difference and linear
discontinuous Galerkin.

Accuracy and speed when calculating solutions in the TDL is a requirement of any method
for solving the IMC equations, regardless of whether the method is deterministic, Monte
Carlo or both (hybrid). Methods must be accurate and fast in the TDL and any method
which lacks either quality is insufficient for solving the most difficult TRT problems. Exam-
ples of existing deterministic methods satisfying this requirement include DSA-accelerated
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SI SN as well as SN moment methods. Examples for Monte Carlo include IMC with RW,
IMD, or DDMC.

Finally, notice that if we substitute the closure approximation Eq. (1.21), which gave us
the radiation diffusion approximation Eq. (1.30), into the Eddington tensor Eq. (1.34) and
the Eddington boundary factor Eq. (1.38), we get E = (1/3)I and Eb = 1/2, respectively.
Similarly, if we substitute Eq. (1.21) into the SMM correction tensor Eq. (1.42) and the SMM
boundary correction factor Eq. (1.45), we get T = 0 and β = 0, respectively. The result in
both cases is that the moment methods, which are equivalent reformulations of transport,
collapse to the radiation diffusion approximation. Thus, when radiation diffusion is a good
approximation of the transport solution, such as in the TDL, E ≈ (1/3)I, Eb ≈ 1/2, T ≈ 0,
and β ≈ 0.

1.4 Hybrid Second Moment Method Summary

“Hybrid second moment (HSM)” are the most illustrative three words for describing my
novel method. “Hybrid” refers to the combination of the Monte Carlo method, which is a
stochastic method, with a deterministic method. “Second moment” refers to the SMM, a
method that I introduced in section 1.3.5. The SMM requires simultaneous solution of the
linear transport equation and the SMM system in an iteration. Fig. 1.3 shows the SMM
algorithm. My HSM method uses the Monte Carlo method without scattering events to
solve the linear transport equation (left side of Fig. 1.3) and compute the SMM data T and
β as Monte Carlo estimators. I then solve the SMM equations (right side of Fig. 1.3) using
a deterministic method, and use the solution φ to compute the scattering source, which I
converge in an iteration. Chapter 2 describes the deterministic component of HSM which
I use to compute the scattering source, Chapter 3 describes the Monte Carlo component
which I use to estimate the SMM data, Chapter 4 describes my implementation of the
combined components, and Chapter 5 demonstrates numerical results using HSM to solve
linear transport problems.

Ω · ∇ψ + σtψ =
σs
4π
φ+ q ,

ψ(x,Ω) = ψ̄(x,Ω) , x ∈ ∂D and Ω · n < 0 .

∇ · J + σaφ = Q0 , x ∈ D ,
1
3∇φ+ σtJ = Q1 −∇ ·T , x ∈ D ,
J · n = 1

2φ+ 2Jin + β , x ∈ ∂D .

T(ψ) =
∫
S2 Ω⊗Ωψ dΩ− 1

3I
∫
S2 ψ dΩ

β(ψ) =
∫
S2 |Ω · n|ψ dΩ− 1

2

∫
S2 ψ dΩ

φ

Figure 1.3: SMM algorithm [7].
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1.5 Similar Hybrid Methods

The fundamental quality of HSM is the use of Monte Carlo to calculate estimators based on a
linear transport problem, combined with a deterministic method for computing the solution
to a moment system. The moment system could be transport equivalent, such as VEF and
SMM, or transport approximant, such as radiation diffusion. The Monte Carlo estimators
are used in the moment solve and the deterministic solution is used in the transport solve.

There are several methods which share this fundamental quality with HSM. These similar
methods can be divided into two categories: those which iterate and those which do not. I
examine the latter in section 1.5.1 Interrupted Monte Carlo and the former in section 1.5.2
Iterated Monte Carlo. My intention is to show how HSM differs.

A third class of methods worth mentioning partition phase space into two non-overlapping
regions and solve a linear transport equation in one region and a radiation diffusion approx-
imation in the other. The three most notable methods in this class, all of which I mentioned
earlier in this Introduction, are RW [14], IMD [15–17], and DDMC [18, 19]. They are similar
to HSM in that they also attempt to improve slow runtimes due to high effective scattering,
but they differ in that they do not iterate because the moment system that they solve is
closed using Eddington’s approximation. They also differ from HSM by partitioning phase
space, which HSM does not.

1.5.1 Interrupted Monte Carlo

Interrupted Monte Carlo methods interrupt the Monte Carlo linear transport solve with a
moment solve. The moment solve uses estimators computed during the MC solve. In the
first case that I describe below, the authors use the moment solution in the MC solve that
they resume after the interruption. In the second case, the authors do not resume the MC
solve. Neither iterate.

Cooper and Larsen’s Hybrid VEF

Cooper and Larsen [27] combined Monte Carlo with VEF in a hybrid method for solving the
linear transport equation. Their method uses Monte Carlo to compute the angle integrated
intensity—which is what nearly all Monte Carlo methods do—but they additionally compute
the Eddington tensor. They pause the Monte Carlo calculation once they have an adequate
estimate for the Eddington tensor. They resume the calculation after solving the VEF
equation and using the VEF solution to compute weight windows. A weight window is a
variance reduction technique that splits high-weight particles and kills low-weight particles.
The method that Cooper and Larsen use to reduce the noise in their Monte Carlo estimate
of the Eddington tensor is running more particles. Specifically, they wait until “a sufficient
number of histories have been simulated to ensure good estimates of the Eddington factors”
before temporarily halting the Monte Carlo calculation to solve VEF.
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My HSM contrasts with Cooper and Larsen’s Hybrid VEF by solving SMM instead of
VEF. Also, their method appears to have noise amplification due to twice differentiation of
the Eddington tensor in the second order form of the VEF equation that they solve, whereas
I avoid noise amplification by solving the first order SMM system with a finite element
method. Finally, my method converges the moment solve in an iteration, in contrast to
Cooper and Larsen who use an unconverged VEF solution to compute weight windows for
Monte Carlo variance reduction.

Novellino and Anistratov’s Hybrid VEF and SMM

Novellino and Anistratov [28, 29] use Monte Carlo to estimate the solution to a 1D linear
transport equation while simultaneously accumulating estimators for the VEF and SMM
data. When their Monte Carlo calculation finishes, they use a finite volume discretization
to compute the solution of the VEF and SMM systems, and then compare the Monte Carlo
estimate of the solution and the moment solutions to a reference solution. They find that the
moment solution is more accurate than the MC estimate for most of the MC pseudo-random
number generator seeds that they tried. This is a great example of a method similar to HSM
because the authors are using a Monte Carlo solve to compute estimators for the SMM data,
which is exactly what I do, but there are some differences.

For example, Novellino and Anistratov include scattering events and they do not exer-
cise the thick diffusion limit, perhaps because their stated focus is neutronics, not radiative
transfer. The authors solve the second order form of the SMM system using a finite volume
discretization. Thus, their method appears to have noise amplification due to twice differ-
entiation of the SMM correction tensor, whereas I avoid noise amplification by solving the
first order SMM system with a finite element method. The authors do not iterate: they do
one Monte Carlo solve followed by one moment solve. I iterate to converge the scattering
source.

Finally, Novellino and Anistratov’s choice to solve a 1D linear transport problem differs
from my choice to solve a 2D linear transport problem. As I explain in section 4.4.1 Dimen-
sionality, making the assumption that the solution varies only along one spatial dimension
can hide numerical problems which arise in the absence of azimuthal symmetry.

1.5.2 Iterated Monte Carlo

Iterated Monte Carlo methods iterate until convergence of some quantity. Each cycle of the
iteration includes a Monte Carlo linear transport solve and deterministic solve of a moment
system or a diffusion system. The deterministic solve uses estimators computed during the
MC solve, and the MC solve uses the solution computed using the deterministic method.
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Park, Densmore, Wollaber, Knoll, and Rauenzahn’s Hybrid HOLO

Chacón et al. [24] published a review of moment methods, which they call high-order/low-
order (HOLO) algorithms. In their review, they republished results showing a solution of
the unsteady gray TRT equations using Park, Densmore, Wollaber, Knoll, and Rauenzahn’s
hybrid HOLO method [30]. Figures 2 and 3 in [24] come from Figures 3 and 4 in [30], in
which the authors describe using Monte Carlo to hybridize a moment method derived in
Park et al. [31]. The starting point of their hybrid moment method is the VEF system of
equations (11) and (12) in [30]. Their subsequent system of equations (13) and (14) arise
after making two changes to the radiation momentum conservation equations. They say,

1. the Eddington tensor is replaced by 1/3 (i.e., the P1 approximation), and

2. consistency terms γ±ij are added to match the truncation errors.

We can evaluate γ±ij by substituting the HO solution moments (i.e., EHO,FHO)
into Eq. (14).

That is, they use Monte Carlo to compute a radiation energy E and flux F , then substitute
it into the radiation momentum conservation equations to get expressions for γ±ij . Their
expressions are equations (15) and (16), which are

∆tF
+
ij +

c2

6
(∆xE)ij + cσijF

+
ij = γ+ijcEi , (1.52)

∆tF
−
ij −

c2

6
(∆xE)ij + cσijF

−
ij = γ−ijcEj , (1.53)

These expressions are written less concisely as equations (33) and (34) in [31]. The less-
concise presentation differs slightly because the Eddington tensor E has not been replaced.
There may also be unintentional differences. For example, the sign on the c2 term is not
flipped. Nonetheless, the heavier notation may be clarifying for someone unfamiliar with
their work, like myself. Equations (33) and (34) in [31] are,

γ+,n+1
i,j = −

F+,n+1,HO
i,j (1 + c∆tσn+1

i,j )− F+,n,HO
i,j + c2∆t

−→n i,j

2
· (∇ · En+1En+1,HO)|i,j

cEn+1,HO
i

, (1.54)

γ−,n+1
i,j = −

F−,n+1,HO
i,j (1 + c∆tσn+1

i,j )− F−,n,HO
i,j + c2∆t

−→n i,j

2
· (∇ · En+1En+1,HO)|i,j

cEn+1,HO
j

, (1.55)

The ∆xE terms in Eqs. (1.52) and (1.53) and ∇·En+1En+1,HO terms in Eqs. (1.54) and (1.55)
are derivatives that appear to amplify the Monte Carlo noise in E. I cannot find where the
authors address noise amplification, but they address the noise itself with two techniques.
The first is survival biasing, or continuous energy deposition, which is perhaps the most
popular IMC variance reduction technique. The second technique is the replacement of
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transport zones with diffusion zones in optically-thick materials. The authors describe the
two techniques in section 3.1.1 and 3.2.1 in [30].

My HSM contrasts with Park, Densmore, Wollaber, Knoll, and Rauenzahn’s hybrid
HOLO by solving SMM. A quality that the methods share is that both solve a radiation
diffusion system modified to include a transport correction which appears as a source term
in the radiation momentum conservation equations. Both compute the source term using
the Monte Carlo solution. Both solve first order systems. However, their hybrid HOLO
method appears to suffer noise amplification due to differentiation of the radiation energy
in their expressions for γ±ij , whereas I avoid it by using a finite element method to discretize
the first order SMM system. They have transport and diffusion zones, which means that
they solve different equations in different materials, whereas I solve the same equations ev-
erywhere. Finally, they demonstrate their method on the unsteady TRT equations, whereas
I demonstrate my method on the steady-state linear transport equation, which is simpler.

Willert’s JFNK-NDA(MC)

Willert [32] introduced a method which Willert calls Jacobian-free Newton-Krylov nonlinear
diffusion acceleration Monte Carlo (JFNK-NDA(MC)). Newton’s method is a method for
solving systems of nonlinear equations. Newton’s method converges quadratically if the
initial guess is close to the solution of the nonlinear system and if the nonlinear functions in
the system are sufficiently smooth. Quadratic convergence means that the number of correct
digits in the solution approximation doubles with each iteration. Newton’s method requires
forming and evaluating the Jacobian matrix of the nonlinear system at each iterate, which
may be expensive, impractical, or impossible. Jacobian-free methods attempt to preserve
the quadratic convergence of Newton’s method without forming and evaluating the Jacobian
matrix. Jacobian-Free Newton-Krylov (JFNK) methods use a Krylov subspace method to
solve the resulting linear system of equations. Nonlinear diffusion acceleration (NDA) is a
method for accelerating the iterative convergence of SI by solving a diffusion approximation
with a consistency term computed using the result of the transport solve. The coarse mesh
finite difference (CMFD) method is widely used for solving the diffusion approximation in the
NDA framework. In fact, the terms CMFD and NDA are sometimes used interchangeably,
even though NDA methods can employ approaches other than CMFD to solve the diffusion
approximation. The scattering source is then computed using the solution of the diffusion
approximation instead of the angle integrated transport solution. Knoll et al. [33] apply
JFNK to NDA. Willert’s JFNK-NDA(MC) is a hybrid method which uses Monte Carlo to
replace the deterministic transport sweep in [33].

An important quality that my writing about my HSM method in this dissertation shares
with Willert’s writing is our expressed desire to avoid noise amplification. I avoid noise
amplification by using a finite element discretization of the first order form of the moment
system. Willert avoids noise amplification by computing an analytic Jacobian-vector product
instead of using a finite difference formula for approximating the Jacobian-vector product.
Willert also applies filtering to the noise in the NDA consistency term before using a finite
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difference formula for approximating the derivative of the consistency term. The noise after
filtering is still amplified by the differentiation, but the result should be less noisy than if
the differentiation were performed on the unfiltered quantity. One important way in which
our methods differ is the location of the terms that we compute during the transport solve
and then use in the deterministic solve: Willert’s consistency term appears on the left-hand
side, whereas my SMM correction tensor appears on the right-hand side.

Lam’s DAIMC

Lam [34] introduced a method which Lam calls Diffusion Accelerated Implicit Monte Carlo
(DAIMC), for which Lam linearizes the TRT equations differently than Fleck and Cummings,
and derives a linear transport equation which does not have effective scattering but requires
iteration. Lam solves a diffusion equation to accelerate the convergence of the iteration.
Lam uses DAIMC to solve a time-dependent gray 2D TRT system of equations in a single
material. Solving the IMC linearization is equivalent to a single step of Newton’s method
applied to the nonlinear TRT equations, whereas DAIMC converges the Newton iteration.
Finally, Lam used a low-discrepancy sequence instead of a pseudo-random number generator
to generate the values with which Lam sampled particle positions and directions and other
quantities. This provided Lam with a Monte Carlo estimator uncertainty of O(N−1), which
is a significant improvement compared to the O(N−1/2) uncertainty that arises with pseudo-
random number generation.

The strongest similarity between Lam’s work and that of this dissertation is that neither
has effective scattering events. The absence of effective scattering makes Lam’s work ideal for
radiative transfer in the thick diffusion limit. One notable difference between Lam’s DAIMC
and HSM is that Lam’s linearization removes effective scattering from the continuous DAIMC
equations. The continuous HSM equations have effective scattering, but the HSM algorithm
treats effective scattering using an iteration with a moment solve rather than including
effective scattering events.

Pasmann’s iQMC

Pasmann [35] introduced a method which Pasmann calls iterative Quasi-Monte Carlo (iQMC),
for which Pasmann uses Monte Carlo to estimate the solution to a energy-dependent steady-
state 3D linear transport equation which has both a scattering source term and a fission
source term, yet Pasmann’s Monte Carlo neutrons undergo neither scattering events nor
fission events. Instead, Pasmann uses the Monte Carlo estimate of the solution from the
previous cycle of his iteration to compute scattering and fission sources, and partitions the
magnitude of these sources among the weights of his Monte Carlo neutrons. Pasmann it-
erates until convergence of the two sources. Pasmann uses a Krylov method to accelerate
the convergence of the iteration. Pasmann resets the seed every cycle, meaning that his MC
neutrons are sourced with the same locations and directions as the previous cycle, so that
only their weights differ.
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Pasmann also found that averaging, which is an alternative to resetting the seed, out-
performed seed resetting, because it allowed for more sampling during the iteration. The
procedure resembles the MC eigenvalue iteration process for neutronics criticality calcula-
tions in which eigenvalue estimates during a user-specified number of “inactive” cycles are
discarded, and estimates during the “active” cycles which follow are averaged, until a con-
vergence criterion involving the average is satisfied.

Finally, Pasmann used a low-discrepancy sequence instead of a pseudo-random number
generator to generate the values with which Pasmann sampled particle positions and direc-
tions and other quantities. This provided Pasmann with a Monte Carlo estimator uncertainty
of O(N−1) which is a significant improvement compared to the O(N−1/2) uncertainty that
arises when one uses random numbers. Pasmann’s work is a great example of a method
similar to HSM because Pasmann uses Monte Carlo without scattering events and iterates
to converge the scattering source, which is exactly what I do, but there are some differences.
One notable difference is that Pasmann does not solve a moment system, nor does Pasmann
exercise the thick diffusion limit, perhaps because Pasmann’s stated focus is neutronics, not
radiative transfer.
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Chapter 2

Deterministic Component of Hybrid
Second Moment

The deterministic component of HSM solves the SMM system of equations Eqs. (1.20a),
(1.43) and (1.46) that I introduced in section 1.3.5. In Chapter 3, I describe how I use
Monte Carlo to estimate the data for the SMM system. In this chapter, I show how I
compute the solution of the SMM system by discretizing the SMM system using a mixed
finite element method. The most important result in this chapter is Eqs. (2.22a) and (2.22b),
which is the weak form for the first-order SMM system introduced in Olivier [7]. I begin
this chapter with an overview of Olivier’s discretizations in section 2.1, for which Fig. 2.1
provides a concise summary. I follow with section 2.2, which justifies my choice of the mixed
SMM discretization over the others, and summarizes the finite element method calculational
procedure. I then build up finite element method concepts in the three sections sections 2.2.3
to 2.2.5 before finally deriving the weak form in section 2.2.6. I follow with a discussion of
the convergence of the discretization in section 2.2.7, pseudocode in section 2.2.8, and a
discussion of solvers and preconditioners in section 2.2.9. I finish with a brief discourse on
the size of the linear system in section 2.2.10.

2.1 Olivier’s Finite Element Moment System

Discretizations

Olivier [7] derived a family of high-order finite element discretizations for VEF and SMM
on curved meshes. High-order means that Olivier’s discretizations give solutions that vary
within a mesh element, instead of piecewise constant solutions which are constant within a
mesh element. Olivier achieves this by computing expansion coefficients for solution poly-
nomials of arbitrary degree.

Olivier used the high-order SN solver in Haut et al. [36] to compute the functionals E and
T and the other functionals of ψ which appear in the VEF and SMM boundary conditions
(together they are called the VEF and SMM “data”). Olivier solved the problem of negative
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SN solutions by using the method in Yee et al. [37] to ensure positivity so that the VEF
and SMM data are well-defined. Haut et al. [38] describe a DSA method for accelerated SI
that is compatible with their high-order SN method. Olivier’s methods can be viewed as an
alternative to the aforementioned DSA solver. My method can be viewed as a hybridization
of Olivier’s methods because I replace SN with Monte Carlo.

I use Olivier’s mixed finite element method (FEM) discretization of the first order SMM
system, which is one of the nine discretizations that Olivier presented in [7]. Fig. 2.1 shows
Olivier’s nine discretizations as a 3 × 3 grid of points. The edges are directed and include
labels indicating how the discretizations may be derived from the others. The only point
with in-degree zero is the center left point which corresponds to the discontinuous VEF
discretization that is the focus of Olivier et al. [39]. Furthermore, this one point actually
contains three methods which Olivier derived by making three different choices for the “nu-
merical flux” that arises in discontinuous FEM discretizations, as articulated by Arnold et
al. [40]. The three discontinuous methods that Olivier presents are Interior Penalty (IP),
Second Method of Bassi and Rebay (BR2), and Minimal Dissipation Local Discontinuous
Galerkin (MDLDG).

The point in Fig. 2.1 corresponding to the Olivier discretization that I use in my method
is the center bottom point: Olivier’s mixed discretization of the first order form of the SMM
equations. Olivier derives the weak form by linearizing his mixed discretization of the first
order form of the VEF equations. In section 2.2.6, I present an alternative derivation starting
from the continuous first order SMM equations.

As I mentioned, my novel method contrasts with Olivier’s high-order SMM by using
Monte Carlo instead of SN to compute the SMM data, which turns Olivier’s method into
a hybrid method, thus giving rise to the “H” in my HSM method. Olivier’s methods are
high-order and handle curved meshes whereas my HSM method is lowest-order and requires
straight-edge meshes. Extending HSM to high-order would require estimating polynomial
SMM data which varies within a mesh element, instead of piecewise constant SMM data
which is constant within a mesh element. Extending HSM to curved meshes would require
tracking to curved surfaces because the boundaries of elements with curved edges in three
spatial dimensions are curved surfaces.

2.2 Mixed Finite Element Discretization

2.2.1 Justification

Consider Fig. 2.1 once more and ask: which (if any) point in the 3 × 3 matrix is the best
candidate for the deterministic component of a hybrid method for solving TRT? I want to
solve transport, not diffusion, so I cannot use the right column. In Advantages of SMM
over VEF, I explain why I selected the middle column instead of the left column, and in
Advantages of Mixed over Discontinuous and Continuous FEM, I explain why I
selected the bottom row of the middle column.
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Figure 2.1: Olivier discretization matrix [7].

Advantages of SMM over VEF

The VEF equation is nonlinear. Thus, VEF is a nonlinear reformulation of the linear trans-
port equation. Solving nonlinear equations often requires more computation and/or more
storage than solving linear equations, although this is not always true. For example, SI
without DSA (or any other acceleration) requires much more computation than VEF in the
TDL. Newton’s method for solving nonlinear equations converges rapidly, provided that the
objective function satisfies certain conditions, but Newton’s method may be inconvenient
due to the challenges or impracticalities associated with computing and storing the gradient.
Olivier used Anderson-accelerated fixed-point iteration, which may be impractical if storing
multiple copies of the solution exceeds the computer memory capacity. Furthermore, the lin-
ear system that arises is non-symmetric due to the presence of the Eddington tensor inside
the divergence. This requires more expensive iterative linear solvers and their associated pre-
conditioners than symmetric and symmetric positive definite (SPD) systems. By definition,
a matrix A is symmetric if A⊤ = A, where A⊤ is the transpose of A, which means that the
elements of A satisfy aij = aji for all i and j. A real matrix A is symmetric positive definite
if and only if A = A⊤ and x⊤Ax > 0 for all vectors x ̸= 0. I define preconditioning, which
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improves the convergence of iterative linear solvers, in section 2.2.9 Linear Solvers and Pre-
conditioners. Linear solvers and their associated preconditioners can leverage the structure
of symmetric and SPD coefficient matrices to minimize the number of operations required to
solve the corresponding linear system. However, these efficiencies are not applicable to VEF,
as the coefficient matrix for the VEF system lacks such advantageous structure. Finally, the
left-hand-side of VEF is different for every cycle of the VEF iteration, which means that the
coefficient matrix must be recomputed and preconditioned every cycle. The right-hand side
of VEF is the same for every cycle.

The SMM equation is linear. Thus, solving it requires solving a linear system of equations
rather than a nonlinear system. The operator on the left-hand-side is SPD, which means
that the SMM system can be solved using conjugate gradient (CG) with Algebraic Multigrid
(AMG) preconditioning. These are efficient iterative methods for preconditioning and solving
linear systems. Multigrid methods leverage the fact that smoothers like Jacobi and Gauss-
Seidel attenuate high-frequency noise in the approximation of the solution to the linear
system more quickly than low-frequency noise, and that coarsening the system converts
low frequencies to high frequencies. Multigrid coarsening and refinement requires a mesh
concept, whereas Algebraic Multigrid is a generalization of Multigrid which alleviates this
requirement. Conjugate Gradient is a method which improves on gradient descent by using
conjugate gradients, as can be seen by comparing the circuitous path in Figure 8 to the
direct path in Figure 30 of [41].

The left-hand-side operator in SMM is identical to the operator that appears on the
left-hand-side of the radiation diffusion approximation. This similarity allows the numerical
development efforts aimed at improving the performance and robustness of iterative linear
solvers for radiation diffusion to be directly leveraged in SMM. By simply employing the
same solvers used for the radiation diffusion system, the SMM system can also be efficiently
solved. Finally, the left-hand-side of SMM is fixed for the entire iteration, which means that
the coefficient matrix can be computed and preconditioned during the first cycle of the SMM
iteration and re-used for all subsequent cycles. The right-hand side of SMM is different for
every cycle. Forming a new right-hand side every iteration is less expensive than forming a
new coefficient matrix every iteration.

Finally, a Fourier stability analysis of VEF and SMM showed that the two have similar
stability and convergence properties [42]. If VEF is theoretically equivalent to SMM, and
the latter is less expensive than the former, then it makes practical sense to choose SMM
over VEF for use in a hybrid method. Thus, I decide between the left and center columns
in Fig. 2.1 by choosing the center column.

Advantages of Mixed over Discontinuous and Continuous FEM

Olivier’s discontinuous and continuous discretizations use the second order form of the SMM
equation. The correction tensor T is twice differentiated in the second order form (see
Eq. (1.47)). This amplifies the Monte Carlo noise in T, which is a problem that Olivier
never had to contend with because Olivier used a deterministic method (SN) to compute
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T, whereas my hybrid method uses Monte Carlo to compute T. The correction tensor T
is once differentiated in the first order form (see Eq. (1.43)). This would appear to amplify
the Monte Carlo noise in T, but using the mixed FEM to discretize the system offloads
the derivative from T to the FEM test function, thus avoiding noise amplification. For this
reason, I decide between the three rows of the center column in Fig. 2.1 by choosing the
bottom row.

2.2.2 Summary of the Finite Element Method

My novel hybrid method uses a finite element discretization. Here, I outline the concept of
finite elements in just a few sentences, then I present details associated with “mixed” finite
element formulations. Mixed is a special class of finite element methods to which my hybrid
method belongs. Mixed problems require simultaneously solving for two quantities which
belong to different finite element spaces. A mixed FEM often results in the need to solve
a “saddle point” system. In a saddle point system, the extremum satisfying the discretized
system is neither a maximum nor a minimum but rather a saddle point.

The finite element method is a popular spatial discretization choice for numerical solu-
tions of partial differential equations in many scientific fields. The FEM tessellates space
using polyhedra that may share faces, edges, and vertices. The domain is the union of the
polyhedra in the tessellation,

D =
⋃

K∈T
K , (2.1)

where T denotes the tessellation and K denotes a single polyhedron, which is called a
“mesh element” or just “element”. The tessellation is called a “computational mesh” or
just “mesh”. The mesh is a purely-geometric entity described by a set of vertices and a set
of edges connecting the vertices. The elements that constitute the mesh in discretizations
of a single spatial dimension (“1D”) are line segments. Examples of 2D mesh elements are
quadrilaterals and triangles. Hexahedra and tetrahedra are examples of 3D mesh elements.
A mesh can contain multiple element types, though it is much more common for a mesh to
contain only one type of element.

The spatial dependence of the FEM solution to the partial differential equation (PDE) is
represented as piecewise polynomials which have domains of definition restricted to individual
elements. If a basis is chosen for the polynomial space (e.g. Lagrange interpolating polyno-
mials), then the unknowns on a mesh element are the coefficients of the polynomial repre-
sentation with respect to the chosen basis. The coefficients are called “degrees-of-freedom”.
Examples of basis functions are the Lagrange interpolating polynomials constructed using
Gauss-Legendre or Gauss-Lobatto points.

The FEM approximates the spatial dependence of the solution to an integral form of
the PDE called the “weak form”. The differential form used to derive the weak form is
called the “strong form”. Integrating the weak form produces a large, sparse system of
linear equations for the degrees-of-freedom. A sparse matrix is a matrix in which most of
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its elements are zero. Matrix-free methods of integrating the weak form, which provide
the action of the linear operator without actually forming the coefficient matrix, can be
combined with efficient preconditioners and linear solvers to efficiently invert the linear
system1. Methods for representing the linear system, ordered from most scalable to least
scalable, include matrix-free, element assembly, partial assembly, and full assembly. Full
assembly is also called “global assembly”. Example steps in a typical FEM include:

i. Choose a mesh, for example a quadrilateral mesh

ii. Choose basis functions, for example Gauss-Legendre basis functions

iii. Compute the coefficient matrix by integrating the left-hand side of the weak form

iv. Compute the right-hand side vector by integrating the right-hand side of the weak form

v. Solve the linear system, for example using an iterative linear solver with a preconditioner

The weak form in iii. and iv. consists of an equation of the form,

L(u, v) = b(v) , (2.2)

where L is a bilinear form and b is a linear form. I describe the functions u and v, which are
called the “trial” and “test” functions, respectively, in section 2.2.5 Finite Element Spaces
for the Mixed Problem. Bilinearity means that,

L(u1 + u2, v) = L(u1, v) + L(u2, v) , (2.3)

and
L(u, v1 + v2) = L(u, v1) + L(u, v2) . (2.4)

Thus, a bilinear form L is separately linear in each of its arguments. A linear form b(v)
satisfies,

b(v1 + v2) = b(v1) + b(v2) . (2.5)

After choosing a basis for the finite element space, the FEM solution u can be expanded in
this basis as,

u =
N∑

m=1

cm ∗ um , (2.6)

where the coefficients cm are determined from solving a matrix equation with matrix entries
Am,n = L(um, un) and right-hand-side b(vm).

Boundary conditions (BCs) can be enforced strongly or weakly. Strong enforcement usu-
ally means modifying the linear system so that the numerical solution satisfies the boundary
condition exactly. For a closed basis, like Gauss-Legendre, this can be achieved by modifying

1Source iteration, which I described in section 1.3.3, could also be considered a matrix-free method
because it inverts a linear system without forming the coefficient matrix.
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the representation of the linear system to force the degrees-of-freedom on the boundary to
equal the values specified in the boundary condition. This is often only possible for Dirichlet
boundary conditions. The Dirichlet BC is called an “essential” BC because it appears in the
definition of the finite element space (see section 2.2.5 for examples of finite element spaces).

Weak enforcement means substituting the boundary condition into the weak form, which
causes the numerical solution to satisfy the boundary condition only approximately, though
the approximation improves under mesh refinement and by increasing the basis function
polynomial order. The former is called h-refinement and the latter p-refinement because
h and p are often used to represent the characteristic mesh element width and the expo-
nent in the O(hp+1) FEM convergence order, respectively. Weak enforcement is common for
Neumann BCs. The Neumann BC is called a “natural” BC because the opportunity for sub-
stitution of Neumann BCs into the weak form appears in the integration-by-parts formulae
which are commonly applied to the weak form. Robin BCs, which are a linear combination
of Dirichlet and Neumann BCs, can be enforced weakly.

2.2.3 Finite Element Integration

Finite element integration is performed on a reference element using a change of variables
called the inverse mesh transformation T−1 : K → K̂, where K ∈ T and K̂ is the reference
element. Fig. 2.2 depicts the transformation where K is a quadrilateral element defined in
physical-space coordinates x = (x, y), and T−1 maps to a reference element K̂ defined in
reference-space coordinates ξ = ξ, η. Some authors choose to center the reference element at
the origin ξ = (0, 0) instead of ξ = (0.5, 0.5), as in Fig. 2.2. The linear system that results
from the integration will be the same regardless of the centering, even though T−1 will differ.
The reference element could be the unit square for 2D problems or the unit cube for 3D prob-
lems, in which case T would be composed of quadrilaterals or hexahedra, respectively. Then
T(ξ) maps points in reference space on the unit square or cube to points in physical space
on a quadrilateral or hexahedral element, respectively. The transformation T−1(x) maps
points in physical space to points in reference space. Finite element methods use T−1(x) to
evaluate problem data, originally defined in physical space, within the reference space. The
determinant of the Jacobian matrix of the transformation appears in the integrand of the
reference-space integrals. The Jacobian matrix is,

F =
∂T

∂ξ
∈ Rdim× dim , (2.7)

and J = |F| is the Jacobian determinant. The Jacobian matrix in 2D is,

F =




∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2


 . (2.8)
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Reference-space integration is performed with a quadrature rule which evaluates the inte-
grand at a finite number of quadrature points. Thus, the accuracy (and expense) of the finite
element method is determined partly by the type and resolution of the mesh, partly by the
type and order of the basis functions, and partly by the type and order of the quadrature
rule used to integrate the weak form. It is important for the number of quadrature points
used in the quadrature rule to be commensurate with the order of the basis function polyno-
mials. A common choice for the quadrature rule order is p+1, where p is the basis function
polynomial order.

(0, 0) ξ

η

(1, 0)

(0, 1) (1, 1)

K̂

T(ξ)

T−1(x)

x

y
K

Figure 2.2: The inverse mesh transformation T−1 maps points on the physical-space element
K to points on the reference-space element K̂ [7].

2.2.4 Sobolev Spaces

A finite element space, which I will define in section 2.2.5, is the space in which one seeks the
finite element solution. It is a subspace of a Sobolev space. Note that the first Sobolev space
below, H1(D), does not have relevance for the mixed FEM discretization of SMM unless
the SMM system is expressed in a single spatial dimension, because there is no distinction
between H(div;D) and H1(D) in 1D. More discussion of dimensionality considerations may
be found in section 4.4.1.

Denote the space of measurable functions with square-integrable weak gradient as,

H1(D) = {u ∈ L2(D) :
∫

D
∇u · ∇u dx <∞} , (2.9)

the space of square-integrable functions as,

L2(D) = {u : D → R :

∫

D
u2 dx <∞} , (2.10)
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and the space of vector-valued functions with square-integrable divergence as,

H(div;D) = {v ∈ [L2(D)]dim : ∇ · v ∈ L2(D)} . (2.11)

Examination of the weak form guides one to an appropriate choice of Sobolev space. For
example, if the weak form includes integrands with gradients, then one would choose H1(D)
because it assures that the integrals in this weak form are computable.

2.2.5 Finite Element Spaces for the Mixed Problem

The order of a PDE is the order of its highest derivative. Any second-order scalar PDE can
be converted to a first-order system of two equations by introducing an auxiliary variable.
For example,

−∇ · ∇u = f x ∈ D , (2.12a)

u = 0 x ∈ ∂D , (2.12b)

can be converted by introducing a new unknown v,

v = ∇u x ∈ D , (2.13a)

−∇ · v = f x ∈ D , (2.13b)

u = 0 x ∈ ∂D . (2.13c)

Eq. (2.12a) is called the “primal formulation”, and the system of Eqs. (2.13a) and (2.13b)
is called the “flux formulation”. The finite element method used to solve the system of
Eqs. (2.13a) and (2.13b) for u and v is referred to as a “mixed” FEM when two different
finite element spaces are chosen for u and v. Mixed finite element methods used in the
flux formulation are somewhat more specialized compared to, for instance, continuous or
discontinuous finite element methods used in the primal formulation. As a result, they are
less commonly used. However, they are covered in textbooks such as Quarteroni and Valli
[43] and, in greater detail, Boffi et al. [44].

The flux formulation has advantages and disadvantages compared to the primal formula-
tion. The linear system for the flux formulation will be larger, and therefore more expensive
to store and invert, because it includes unknowns for both u and v. However, the flux for-
mulation is first-order, whereas the primal formulation is second-order. This is crucial for
my hybrid method, as I aim to avoid differentiation due to its tendency to amplify noise.
The SMM data, which I compute using Monte Carlo, inevitably contain statistical noise.

Derivation of the FEM weak form typically involves multiplying by a “test function”,
then integrating over an element, then taking the sum over all elements. The function used
to approximate the solution is called the “trial function”. Petrov-Galerkin approximations
use different basis functions for the test and trial functions, whereas Bubnov-Galerkin ap-
proximations use the same basis functions. I use a Bubnov-Galerkin approximation. In
the mixed FEM in my hybrid method, the finite element space of my scalar trial and test
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functions is the Discrete Galerkin (DG) finite element space, and that of my non-scalar trial
and test functions is the Raviart Thomas (RT) finite element space.

The DG space is a discrete subspace of the space of square-integrable functions, L2(D).
Square-integrable means that, ∫

u2 dx <∞ . (2.14)

Adopting the notation from Olivier [7], the scalar trial function and its associated test
function on each element belong to the space of mapped polynomials defined by composition
with the inverse mesh transformation,

Qp(K) = {u = û ◦T−1 : û ∈ Qp(K̂)} , (2.15)

where Qp(K̂) denotes the tensor product polynomial space of equal degree in each variable,

Qp(K̂) =

{
Qp,p(K̂) , dim = 2

Qp,p,p(K̂) , dim = 3
. (2.16)

The multi-dimensional polynomial spacesQm,n(K̂) andQℓ,m,n(K̂) are simply tensor products
of univariate polynomial spaces,

Qm,n(K̂
2) = {p(x)q(y) : p ∈ Pm(K̂

1) , q ∈ Pn(K̂
1)} , (2.17a)

Qℓ,m,n(K̂
3) = {p(x)q(y)r(z) : p ∈ Pℓ(K̂

1) , q ∈ Pm(K̂
1) , r ∈ Pn(K̂

1)} , (2.17b)

where Pk is the univariate polynomial space,

Pk(K̂
1) = {p : K̂1 → R : p =

k∑

i=0

αix
i , αi ∈ R} = span{1, x, x2, . . . , xk} . (2.18)

The degree-p DG space is,

Yp = {u ∈ L2(D) : u|K ∈ Qp(K) , ∀K ∈ T } . (2.19)

The degrees-of-freedom in the DG space are not shared by elements, which allows one to
use either open or closed points to define the basis functions. This contrasts with the
more common Continuous Galerkin (CG) space, which has shared degrees-of-freedom, and
therefore is restricted to closed points.

The RT space is the eponymous creation of P. Raviart and J. Thomas [45, 46]. It is a
discrete subspace of the space of vector-valued functions with square-integrable divergence,
H(div;D), where

H(div;D) = {v ∈ [L2(D)]2 : ∇ · v ∈ L2(D)} . (2.20)

Vectors in H(div;D) have normal components which are continuous across element faces,
but there is no continuity requirement for the tangential component, which means that the
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degrees-of-freedom in the normal direction must be at closed points. Once again adopting
the notation from Olivier [7], the 2D RT space is the local polynomial space Qp+1,p(K̂) ×
Qp,p+1(K̂), and the 3D RT space is Qp+1,p,p(K̂) × Qp,p+1,p(K̂) × Qp,p,p+1(K̂). The 1D RT
space is a discrete subspace of H1(D). That is, there is no distinction between H(div;D)
and H1(D) in 1D. The degree-p RT space is,

RT p = {v ∈ [L2(D)]dim : v|K ∈ Dp(K) ∀K ∈ T and Jv · nK = 0 ∀F ∈ Γ0} . (2.21)

For more information about the DG and RT spaces, see the text from which I took all of my
finite element language and notation used in this dissertation, which is Chapter 4 “Finite
Element Preliminaries” in Olivier [7].

2.2.6 Derivation of the Weak Form

The finite element method weak form for the mixed problem is: find (φ,J) ∈ Yp×RTp such
that, ∫

u∇ · J dx+

∫
σa uφ dx =

∫
uQ0 dx , ∀u ∈ Yp , (2.22a)

− 1

3

∫
∇ · v φ dx+

∫
σt v · J dx+

2

3

∫

Γb

(v · n)(J · n) ds =
∫

v ·Q1 dx−
∫

Γb

v ·Tn ds

+
2

3

∫

Γb

(v · n)(2Jin + β) ds−
∫

Γ0

JvK · {{Tn}} ds+
∫
∇hv : T dx ∀v ∈ RTp , (2.22b)

where the “broken” gradient ∇h, the jump operator J·K, and the average operator {{·}} are,

(∇hu)|K = ∇(u|K) ∀K ∈ T , (2.23)

JuK =

{
u1 − u2 F ∈ Γ0

u F ∈ Γb

, (2.24)

{{u}} =





u1 + u2
2

F ∈ Γ0

u F ∈ Γb

. (2.25)

In Eq. (2.23), u|K denotes the restriction of u to the element K. In Eqs. (2.24) and (2.25),
Γ0 is the set of unique faces internal to the mesh, and Γb is the set of unique faces on the
boundary of the mesh.

To derive Eq. (2.22a), multiply Eq. (1.20a) by the test function u ∈ Yp, then integrate
over D. Deriving Eq. (2.22b) requires several steps and employs integration-by-parts rules
created using the following vector calculus identities:

• Product rule for divergence of a scalar (a) times a vector (F ):

∇ · (aF ) = ∇a · F + a∇ · F , (2.26)
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• Divergence theorem: ∫

K

∇ · F dx =

∫

∂K

F · n ds , (2.27)

• Product rule for divergence of a vector (v) dotted with a tensor (T):

∇ · (v ·T) = v · (∇ ·T) +T : ∇v , (2.28)

• Double dot product involving vectors (v, n) and a tensor (T):

(v ·T) · n = v · (Tn) . (2.29)

Combining Eq. (2.26) with Eq. (2.27) gives an integration-by-parts rule that offloads a deriva-
tive from a scalar trial function to a vector test function and produces a surface integral as
a side effect, ∫

∇a · F dx = −
∫
a∇ · F dx−

∫

∂K

a(F · n) ds . (2.30)

Combining Eq. (2.28) with Eq. (2.27) gives an integration-by-parts rule that offloads a deriva-
tive from a tensor function to a vector test function and produces a surface integral as a side
effect. Subsequent use of Eq. (2.29) in the integrand of the surface integral gives,

∫
v · ∇ ·T dx = −

∫
T : ∇v dx−

∫

∂K

v ·Tn ds . (2.31)

The three steps for deriving Eq. (2.22b) are as follows:

Step 1) Integration over element K

Taking the inner product of both sides of Eq. (1.43) with a test function v ∈ RTp on an
arbitrary element K and applying the integration-by-parts rules in Eqs. (2.30) and (2.31)
gives,

− 1

3

∫

K

∇ · v φ dx+
1

3

∫

∂K

φ (v · n) ds+
∫

K

σt v · J dx

=

∫

K

v ·Q1 dx−
∫

∂K

v ·Tn ds+

∫

K

∇v : T dx ∀v ∈ RTp . (2.32)

Step 2) Sum over all elements

Summing Eq. (2.32) over all elements K ∈ T gives,

− 1

3

∫
∇ · v φ dx+

1

3

∫

∂D
φ (v · n) ds+

∫
σt v · J dx

=

∫
v ·Q1 dx−

∫

∂D
v ·Tn ds−

∫

Γ0

JvK · {{Tn}} ds+
∫
∇hv : T dx ∀v ∈ RTp . (2.33)
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Step 3) Enforce boundary condition

Solving Eq. (1.46) for φ and substituting into the second term in Eq. (2.33) gives the final
result, Eq. (2.22b).

2.2.7 Convergence of the Discretization

If the solution to the continuous SMM equations is sufficiently smooth and the mesh is
relatively undistorted, then, according to the Brambell-Hilbert Lemma, the chosen finite
element spaces Yp and RTp will yield a solution of the discretized SMM equations with a
numerical error of O(hp+1) [47]. In this expression, p is the order of the basis function
polynomials and h is the characteristic mesh length,

h = max
K∈T

(∫

K̂

J dξ

)1/ dim

. (2.34)

In Eq. (2.34), J = det(F) is the Jacobian determinant of the element transformation, and F
is the Jacobian matrix of the mapping from reference space to physical space x = T(ξ),

F =
∂T

∂ξ
∈ Rdim× dim . (2.35)

If the conditions on solution smoothness or mesh distortion are not satisfied, then the
Bramble-Hilbert Lemma is inapplicable, and the asymptotic order of the numerical error
in the solution could exceed the hypothesized value of O(hp+1).

2.2.8 Mixed Finite Element Method Algorithm

Algorithm 1 shows the definition of a function which implements the mixed finite element
method solver of the second moment system described in this chapter. Algorithm 1 defines
the logic inside the sm() call in the HSM algorithm that I will present in Algorithm 3. The
most important variable elided from Algorithm 1 is the mesh. The mesh would include a
description of the element geometry, material properties, and topology. All are required for
integrating the bilinear form, integrating the linear form, and representing the solution.

Line 1 shows the function name and function parameters, all of which appear as source
terms on the right-hand side of the weak form in Eqs. (2.22a) and (2.22b). Line 2 assembles
the bilinear form, which involves computing the integrals on the left-hand side of the weak
form, ultimately leading to the discrete operator. Section 2.2.2 mentions some choices for
representing the discrete operator. For example, in the case of full assembly, the variable
“A” in Line 2 would represent a coefficient matrix. In contrast, in a matrix-free method,
“A” would denote an entity that describes the action of the corresponding linear operator.
For matrix-free methods, Line 2 would compute the action of the bilinear form instead of
assemble it. Line 3 assembles the linear form, which requires computing the integrals on the
right-hand side of the weak form.
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Line 4 solves the linear system Aφ = b in a manner described in section 2.2.9 Linear
Solvers and Preconditioners. The solution of the linear system is a vector containing all of
the J degrees-of-freedom stacked on top of all of the φ degrees-of-freedom. The function
referenced in Line 4 returns only the φ degrees-of-freedom, thus the J degrees-of-freedom
are discarded. Line 5 returns the solution.

Assembly of the bilinear form in Line 2 requires a loop over elements. For each element,
the local “stiffness matrix” is computed by integrating the bilinear form over the element,
and then the local stiffness matrix is mapped to the global stiffness matrix using the mesh
connectivity. Assembly of the linear form in Line 3 also requires a loop over elements. For
each element, the local “load vector” is computed by integrating the source terms multiplied
by the basis functions over the element, and then the local load vector is mapped to the
global load vector using the mesh connectivity. Finite element methods were first developed
and applied to problems in structural mechanics, which gave rise to the “stiffness” and “load”
adjectives for describing the coefficient matrix and right-hand-side vector.

Algorithm 1 Mixed Finite Element Method Solve of Second Moment System

1: function sm(Q0,Q1,T, β)
2: A ← assemble bilinear form()
3: b ← assemble linear form(Q0,Q1,T, β)
4: φ ← linear solve(A, b)
5: return φ
6: end function

2.2.9 Linear Solvers and Preconditioners

Consider the linear system Ax = b. Let r(i) = b − Ax(i) denote the residual after i cycles
of the iterative linear solver, and let || · ||2 be the 2-norm of some vector. The 2-norm for a
vector r ∈ RN is,

||r||2 =

√√√√
N∑

j=1

|rj|2 , (2.36)

where rj is the jth entry in the vector r. The mixed FEM SMM system of Eqs. (2.22a)
and (2.22b) is not symmetric. It can be symmetrized by multiplying Eq. (2.22a) by negative
unity and Eq. (2.22b) by positive three. This allows the solution to the linear system to be
computed using the Minimal Residual Method (MINRES) [48], whereas the unsymmetrized
system must be solved at greater expense using Generalized Minimal Residual Method (GM-
RES) [49]. MINRES chooses iterates x(i) which minimize ||r(i)||2 [50].

The mixed FEM SMM system permits hybridization, which replaces the block system
with a smaller system for the associated Lagrange multipliers. The resulting system has
fewer unknowns and is also SPD, which means that it can be solved using the previously-
mentioned CG method [51, 52], and preconditioned using the previously-mentioned AMG
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method [53]. If A is SPD then it defines a norm ||r||A−1 = (rTA−1r)1/2, and CG chooses
iterates x(i) which minimize ||r(i)||A−1 [50]. More details on AMG can be found in books
such as McCormick [54] and Briggs et al. [55]. The hybridized system, provided in [7] and
copied here, is: find (J , φ, λ) ∈ R̂T p × Yp × Λp such that,

∫
u∇h · J dx+

∫
σa uφ dx =

∫
uQ0 dx , ∀u ∈ Yp , (2.37a)

−1

3

∫
∇h ·v φ dx+

∫
σt v ·J dx+

2

3

∫

Γb

(v ·n)(J ·n) ds+
∫

Γ0

Jv · nK λ ds = S , ∀v ∈ R̂T p ,

(2.37b)∫

Γ0

µ JJ · nK ds = 0 , ∀µ ∈ Λp , (2.37c)

where

S =

∫
v ·Q1 dx−

∫

Γb

v ·Tn ds+
2

3

∫

Γb

v ·n (2Jin + β) ds−
∫

Γ0

JvK · {{Tn}} ds+
∫
∇hv : T dx

(2.38)
is the source term for the hybridized discretization and λ are the Lagrange multipliers.

Preconditioning improves the convergence of iterative linear solvers. Left preconditioning
means replacing Ax = b with,

M−1Ax =M−1b , (2.39)

where M approximates A, its inverse M−1 is easy to form and easy to apply, and M−1A has
a smaller condition number than A. Right preconditioning means replacing Ax = b with,

AM−1y = b , (2.40)

where y = Mx. Left preconditioning modifies both A and b, whereas right preconditioning
modifies A while leaving b unchanged. The choice between left and right preconditioning
depends on the properties of the coefficient matrix and the properties of the preconditioner.
Since the mixed FEM SMM is a block system, block preconditioners are a natural choice for
preconditioning the coefficient matrix because they exploit the block structure of the matrix.

The condition number of a coefficient matrix is a quantity κ(A) ∈ [1,∞) which determines
the convergence behavior of iterative solvers used for solving the associated linear system.
The condition number is,

κ(A) =
σmax

σmin

, (2.41)

where σmax and σmin are the largest and smallest singular values of A. The singular values of
A are the entries of the diagonal matrix Σ in the singular value decomposition A = UΣV T .
It is not uncommon for an iterative linear solver to fail to converge when the coefficient
matrix has a high condition number. The condition number of the identity matrix is unity.
The condition number of a singular matrix is considered to be infinity.
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Fig. 2.3 shows the iterative convergence of various linear solvers applied to two linear
systems of equal size. The condition numbers of these systems differ by a factor of approxi-
mately 75, as detailed in table 2.1. The linear systems are from a linear continuous Galerkin
discretization of Poisson’s equation with Dirichlet boundary conditions on a 40× 40 mesh of
equal-sized squares [56]. The linear systems have 3239 unknowns and about 0.5% of the en-
tries in the coefficient matrix are nonzero. I used a convergence tolerance of 10−7 with solvers
from the parallel, sparse, iterative linear solver library known as HYPRE [57]. The plots in
Fig. 2.3 show the 2-norm of the residual at iteration cycle i, ||r(i)||2, where r(i) = b− Ax(i).
I ran until convergence or cycle 3300, whichever occurred first. The solvers that I plotted in
Fig. 2.3 are:

• cg—Conjugate Gradient (described above).

• bicgstab—Biconjugate Gradient Stabilized [58] is a variation on CG which does not
require A to be symmetric

• amg—Algebraic Multigrid (described above).

• gmres—Generalized Minimum Residual (described above).

• lgmres—Loose Generalized Minimum Residual [59] is a variation on GMRES that at-
tempts to accelerate GMRES convergence by disrupting the cyclic pattern of directions
of the residual vectors at the end of each restart cycle of restarted GMRES.

• flexgmres—Flexible Generalized Minimum Residual [60] is a variation on GMRES that
allows changes in the preconditioner at every step.

• hybrid—HYPRE’s “hybrid” solver assumes a strongly diagonally dominant system,
and begins iterating a diagonally scaled Krylov solver without preconditioning. If the
convergence rate of the solver falls below a threshold, the algorithm switches to a
preconditioned Krylov solver. The solver and preconditioner are arbitrary, but I used
HYPRE’s default, which is CG preconditioned using AMG.

• amg cg—Algebraic Multigrid Preconditioned Conjugate Gradient uses HYPRE’s CG
solver with HYPRE’s AMG as the preconditioner.

Fig. 2.3 demonstrates that iterative solvers do not always converge, and that convergence
may require more iterations for matrices with larger condition numbers, even with precondi-
tioning. The curves in Fig. 2.3 which touch the right edge of the plots correspond to solvers
that did not converge. For example, CG converged after cycles 1769 in Fig. 2.3 (a), but had
not yet converged after 3300 cycles in (b). A solver that converges in fewer iterations than
another may not necessarily be faster, as the cost of an iteration depends on the solver and
can vary between different solvers.

The smooth curves in Fig. 2.3 correspond to solvers which minimize the 2-norm of the
residual, ||r(i)||2, which is the norm that I chose to plot. If I had plotted the A−1-norm of the
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residual, ||r||A−1 , then the CG curve would appear smooth instead of choppy. The reason
that the curve for HYPRE’s hybrid solver and HYPRE’s AMG-preconditioned CG solver
(“hybrid” and “amg cg” in Fig. 2.3, respectively) appear similar is because the hybrid solver
spends some initial iterations running a different solver before detecting the slow convergence
rate and switching to AMG-preconditioned CG.

In my HSM implementation, which I describe in Chapter 4, I use the parallel, sparse,
direct linear solver library known as SuperLU [61]. In practice, a dense, direct linear solver
typically requires O(n3) operations to solve a system of n linear equations with n unknowns.
Sparse direct solvers, such as SuperLU, leverage the sparsity of the system to compute the
solution in significantly fewer operations and substantially lower memory usage compared to
dense direct solvers. The memory savings are achieved through the use of specialized data
structures that store only nonzero elements of the matrix.

Each iteration of an iterative linear solver requires only O(n) operations when applied
to sparse systems. However, the number of iterations required to converge cannot generally
be determined a priori and may be quite large, particularly for systems where effective
preconditioners are either very difficult to construct or practically unavailable. In such cases,
SuperLU may be more efficient. Another tradeoff is that direct solvers give an exact solution
(up to machine precision) in a predetermined number of operations, whereas iterative solvers
give an approximate solution, and may not converge.

Assume that we can effectively precondition the sparse linear system that we want to
solve, and that the system has a very large number of unknowns. Then the relative cost of
the aforementioned algorithms is,

AMG+CG < BPC+MINRES < BPC+GMRES < SuperLU , (2.42)

where BPC is a block preconditioner. A final consideration when picking a linear solver is
the amount of parallelism in the algorithm and whether the parallel work can be efficiently
mapped onto a given computer architecture. For example, the coarsening operation funda-
mental to multigrid produces progressively smaller linear systems which become too small
to amortize graphics processor kernel launch overhead, and hybridization necessitates global
assembly, which is less scalable than matrix-free methods. An efficient, matrix-free iterative
solver combined with block preconditioning of the saddle-point problem may outperform
AMG+CG on the hybridized system, particularly on graphics processors [62].

I observe that the expense of my linear solve, which uses the serial implementation of
SuperLU, is orders of magnitude less than the expense of my Monte Carlo solve. This is
partly because I run a relatively large number of simulation particles, exceeding 1 billion,
and partly because the number of unknowns in my linear system is relatively small, never
exceeding 1 million. I would switch to an iterative linear solver, or at least parallel SuperLU,
if the linear solve became the bottleneck, which could happen if I increase the size of the
linear system or decreased the number of simulation particles. Chapter 4 has more details
on my HSM implementation, and Chapter 5 lists the exact number of simulation particles
and elements that I used in my calculations.
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(a) (b)

Figure 2.3: Solvers require more iterations to converge when the condition number increases,
in this case by a factor of κ(b)/κ(a) ≈ 75 [56].

(a) (b) (b) / (a)

σmax 6.39 · 1011 6.37 · 1013 99.72

σmin 1.05 · 105 1.38 · 105 1.32

κ(A) 6.11 · 106 4.61 · 108 75.42

Table 2.1: Condition numbers of the linear systems in Fig. 2.3 (a) and (b).

(a) (b)

cg 1769 3300

bicgstab 1149 3296

amg 3300 3300

gmres 3300 3300

lgmres 1673 3300

flexgmres 3300 3300

hybrid 654 784

amg cg 374 421

Table 2.2: Iterations required to converge the solvers in Fig. 2.3 (a) and (b). The value 3300
indicates that the solver did not converge to the tolerance of 10−7 after 3300 iterations.
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2.2.10 Linear System Size

The size of the linear system can be determined using the mesh topology and the order of
the basis function polynomials. The trial function for the scalar unknown φ has piecewise
polynomial representation. Specifically, we seek the trial function in the degree-p DG space,
φ ∈ Yp, meaning that the total number of degrees-of-freedom used to represent φ is simply the
number of degrees-of-freedom per element multiplied by the number of elements. Elements
do not share Yp degrees-of-freedom.

The trial function for the vector unknown J also has piecewise polynomial representation,
but we seek the trial function in the degree-p RT space, J ∈ RTp. In a quadrilateral mesh of
a geometry containing two spatial dimensions, each element has four RT0 degrees-of-freedom:
one on the midpoint of each of the four edges of the quadrilateral. Elements share a subset
of their RTp degrees-of-freedom. If two elements have an edge in common, then the RTp
degrees-of-freedom which correspond to the component of the vector unknown J that is
normal to the common edge are shared.
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Chapter 3

Monte Carlo Component of Hybrid
Second Moment

The Monte Carlo component of HSM solves the linear transport Eqs. (1.13a) and (1.13b)
that I introduced in section 1.3.2. The MC solve in HSM does not have scattering events.
Instead, the effect of the scattering source in Eq. (1.13a) is incorporated by solving the SMM
system of Eqs. (1.20a), (1.43) and (1.46) that I introduced in section 1.3.5. In Chapter 2,
I described the mixed finite element method discretization that I use to solve the SMM
system. In this chapter, I show how to use Monte Carlo to estimate the data for the SMM
system, and then how to use the solution of the SMM system to incorporate the effect of the
scattering source into the Monte Carlo solve.

The most important results in this chapter are the estimators, which are sums, and
the procedure for their accumulation. Mathematically, the accumulation procedure is just
repeated random variate generation and function evaluation. Random variate generation is
divided into “sourcing” and “tracking”, where sourcing randomly selects the initial phase-
space points, and tracking randomly moves the points through phase-space. Estimators are
the output of the Monte Carlo solve. An estimator is also known as a “tally”, and tallying
refers to the accumulation of tallies.

I begin this chapter with two sections in which I introduce mathematics and terminology
for describing Monte Carlo simulation. The first is section 3.1 Monte Carlo Simulation of
Random Experiments, and the second is section 3.2 Monte Carlo Simulation as Integral
Estimation. Random experiments pervade the human experience, and integration is a very
common application of Monte Carlo that finds use in many different scientific fields. Both
provide insight into Monte Carlo integration of the linear transport Eqs. (1.13a) and (1.13b),
which I describe in section 3.3. I describe how I use Monte Carlo to compute the data for
the SMM Eqs. (1.20a), (1.43) and (1.46) in section 3.4, and I derive the variance of the
transport correction tensor estimator T̂ in section 3.6. The derivation demonstrates an
undesirable dependence on the scaling parameter from the TDL regime that I described in
section 1.3.6. I conclude this chapter with derivations of lower variance estimators for T
in sections 3.7 and 3.8. An ideal estimator would have a desirable dependence on the TDL
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scaling parameter and would be less costly to compute than efficient alternative estimators.
Many definitions, examples, derivations, and much of the notation that I use for proba-

bility quantities, such as random variables, probability density functions, expectation, etc.
come from an excellent calculus-based introductory probability textbook by L. Leemis [63].
The primary focus is probability, but Leemis includes a secondary focus on Monte Carlo
simulation as a way to provide supporting evidence for analytically-derived probabilities and
expectations. Leemis does not mention transport. Readers looking for an elaboration of the
Monte Carlo transport description that I provide in this chapter may consider the textbook
by Lux and Koblinger [64]. Additional references which may also be helpful are the textbook
by Spanier and Gelbard [65], the code manual by Kulesza et al. [66], and the lecture slides
by Brown [21].

3.1 Monte Carlo Simulation of Random Experiments

Monte Carlo simulation is a broad field that resists one definition. One very general definition
of MC simulation is: a numerical method that uses random numbers to approximate the
probability of one or more possible outcomes in the sample space of a random experiment.
The Monte Carlo component of HSM is a Monte Carlo simulation of the system of particles
which behave according to the linear transport equation on the left side of Fig. 1.3. In
section 3.3 Monte Carlo Integration of Linear Transport, I will show that the Monte Carlo
component of HSM is Monte Carlo integration. Thus, it is both a MC simulation and MC
integration. While the MC integration formulation is what I will use to derive the Monte
Carlo estimators for the SMM data T and β (which appear on the bottom of Fig. 1.3), I
first provide a general description of MC simulation in this section as a way to introduce
important terminology.

We can enumerate all possible outcomes of a random experiment, but we cannot predict
the outcome, otherwise it would not be random. A random experiment could be flipping
two coins, each with the letter H written on one side and T on the other, and observing how
many H-side-up coins result. Another random experiment could be directing a laser pulse
consisting of two photons at a foil and observing how many of the incident photons pass
through the foil without collision.

3.1.1 Discrete Random Variables

Some definitions are required to describe a Monte Carlo simulation of the aforementioned
experiments. A random variable is a function X that assigns each element of the sample
space s ∈ S to a real number X(s) = x, so X : S → R. The support of a random variable
is the subset of the range of the random variable which has nonzero probability of being the
outcome of an associated random experiment. That is, an element x in the support of X has
nonzero probability of occurring as the outcome of the random experiment P (X = x) ̸= 0,
whereas an element y in the range of X may have zero probability of occurring as the



52

outcome of a random experiment, P (X = y) = 0. The support of X is the set of real
numbers A = {x|x = X(s), s ∈ S}.

We can denote the sample space for the aforementioned coin flipping experiment as
S = {TT,HT,TH,HH} and the support A = {0, 1, 2} so that the random variable X is the
number of H-side-up coins after flipping,

X(TT) = 0 , X(HT) = X(TH) = 1 , X(HH) = 2 . (3.1)

The probability of observing an outcome in the set A ⊂ A is,

P (A) = P (X ∈ A) =
∑

A

f(x) , (3.2)

where f(x) is the probability mass function (PMF). Assuming that the outcomes in S are
equally likely,

f(x) = P (X = x) =
number of outcomes in S such that X(s) = x

total number of outcomes in S
, (3.3)

which gives us,

f(x) =





1/4 x = 0 ,

1/2 x = 1 ,

1/4 x = 2 .

(3.4)

The random variable X is discrete because A is countable. The PMF for the photon trans-
mission experiment would be more complicated because the outcomes are not equally likely.

The coin flipping experiment can be simulated using Monte Carlo by writing a program
that instructs a computer to flip two coins. Let N denote the iteration count of a loop
enclosing the aforementioned logic. If we write the loop-enclosed logic such that it does
not include any early loop exits, then N is the total number of random experiments, i.e.
simulated coin flips. Our simulated PMF is,

f̂(x) =
1

N
∗





number of random experiments resulting in TT x = 0 ,

number of random experiments resulting in HT or TH x = 1 ,

number of random experiments resulting in HH x = 2 .

(3.5)

where I used the “hat” on f̂(x) to denote that f̂(x) is a Monte Carlo approximation of f(x).
Our simulation has the property that,

lim
N→∞

f̂(x) = f(x) . (3.6)

Eq. (3.6) is a consequence of the Law of Large Numbers (LLN), which states that the
empirical probabilities will converge to the theoretical probabilities as the number of trials
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in a random experiment goes to infinity1. Infinite N is infeasible, but N can still be very
large, perhaps even large enough to provide a useful MC approximation. In this case we
know f(x), so there is no need to approximate it. If we did not know f(x), then computing
f̂(x) would be useful, as long as N is sufficiently large.

The coin flipping simulation is a simple Monte Carlo simulation that demonstrates the
“frequentist” approach to probability, which defines probability as the long-run frequency
of random events. The definitions needed for describing the coin flipping simulation will
remain useful for describing more intricate Monte Carlo methods, such as the Monte Carlo
component of HSM. A complication arising from the HSM method compared to the coin
flipping simulation is that all the random variables in HSM are continuous rather than
discrete.

3.1.2 Continuous Random Variables

Three important probability distributions for describing the HSM method are the uniform,
exponential, and Gaussian distributions, all of which are distributions of continuous random
variables. A continuous random variable X has an uncountable support A and probability
density function (PDF) satisfying the existence conditions,

∫

A
f(x) dx = 1 and f(x) ≥ 0 ∀x ∈ R . (3.7)

Probabilities for continuous random variables are integrals instead of sums,

P (A) = P (X ∈ A) =
∫

A

f(x) dx . (3.8)

Given constants a and b such that a < b, we can compute probability by integrating,

P (a < X < b) =

∫ b

a

f(x) dx . (3.9)

Note that,

P (X = a) =

∫ a

a

f(x) dx = 0 , (3.10)

whereas P (X = a) ̸= 0 for a discrete random variable X for which a ∈ A.
The first of the three important probability distributions for describing the Monte Carlo

component of the HSM method is the uniform probability distribution. Let X ∼ U(a, b)
denote that the continuous random variable X is uniformly distributed between a and b such
that a < b. The uniform PDF is,

f(x) =
1

b− a a < x < b . (3.11)

1The Weak and Strong LLN differ in the type of convergence guaranteed, but both types apply here.
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The second important probability distribution is the exponential distribution. Let X ∼
exponential(λ) denote that X is exponentially distributed with rate λ. The exponential
PDF is,

f(x) = λe−λx x > 0 . (3.12)

The rate parameter λ in Eq. (3.12) is constant, but the exponential distribution can also
be parameterized by a non-constant rate. Let X ∼ exponential(λ(x)) denote that X is
exponentially distributed with non-constant rate λ(x). The associated PDF is,

f(x) = λ(x)e−
∫ x
0 λ(x′) dx′

x > 0 . (3.13)

The third and final important probability distribution for describing the MC component of
HSM is the Gaussian distribution, also known as the Normal distribution. Let X ∼ G(u, σ2)
denote that X is Gaussian distributed with population mean µ and population variance σ2.
The Gaussian PDF is,

f(x) =
1√
2πσ

e−
1
2(

x−µ
σ )

2

−∞ < x <∞ . (3.14)

A random variable is fully characterized by its PDF. Moments, which provide an alternative
way to describe a random variable, hold particular significance in Monte Carlo methods.
This is because estimating a quantity using Monte Carlo can often be framed as the Monte
Carlo estimation of a moment.

3.1.3 Probability Distribution Moment Estimation

Probability distribution moments, which are equivalently referred to as moments of a random
variable, are integrals of the PDF. In section 1.3.5 Moment Methods for Linear Transport, I
said that a moment is an integral, which is also true here. There, the purpose was to derive
approximate or equivalent forms of some PDE. Here, the purpose is different. Eq. (3.6)
says that our MC approximation converges to the PDF in the limit as N →∞, but it says
nothing about the magnitude of the difference between the approximation and the PDF
at different N . The second central moment, which is called the “variance”, can provide
that information. In probability, taking a moment of the PDF is called computing the
“expectation” or “expected value”, which can be denoted as,

E[g(X)] =

∫

A
g(X)f(x) dx , (3.15)

where g(X) is some function of the random variable X. Taking g(X) = Xr for some r ∈ Z+

gives the rth population moment of X about the origin,

E[Xr] =

∫

A
xrf(x) dx , (3.16)
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where r = 1 defines the population mean, often denoted µ, so E[X] = µ. Taking g(X) =
(X − µ)r gives the rth population moment of X about the population mean,

E[(X − µ)r] =
∫

A
(x− µ)rf(x) dx , (3.17)

where r = 2 defines the population variance, denoted σ2 or Var[X], so E[(X − µ)2] = σ2 =
Var[X]. An equivalent expression for the variance is Var[X] = E[X2]− µ2 because,

E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2]− 2µE[X] + µ2

= E[X2]− µ2 . (3.18)

From Eq. (3.15), it is clear that the PDF f(x) is required to compute the expected value,
but we often do not know f(x). In those cases, we cannot compute the expected value, but
we can estimate it. Consider the population mean,

E[X] = µ =

∫

A
xf(x) dx . (3.19)

We can estimate Eq. (3.19) by computing a function of random variables known as the
sample mean, denoted X̄,

µ ≈ X̄ =
1

N

N∑

i=1

Xi . (3.20)

In Eq. (3.20), Xi is a random variable which describes the outcome of the ith random
experiment. The random variablesX1, . . . , XN are “independent”, meaning that the outcome
of the ith random experiment does not affect the outcome of the jth random experiment
for 1 ≤ i, j ≤ N with i ̸= j. The random variables X1, . . . , XN are also “identically
distributed”, meaning that they all have the same probability distribution. The qualities of
independence and identical distribution frequently occur together, leading to the adjectival
acronym independent and identically distributed (iid). Thus, X1, . . . , XN are iid random
variables.

Computing Eq. (3.20) requires realizing the random variables. A “random variate” is
a realization of a random variable2. One possible sequence of random variates for the coin
flipping example could be 0, 2, 0, 1, 1, so X̄ would be 4/5. We could also estimate Eq. (3.19)
using a single variate. Is X̄ better than X1 for estimating µ? One’s intuition might indicate
that X̄ would outperform a single variate because it incorporates information from multiple
variates. We can provide mathematical support to this intuition by examining whether X̄
and X1 are unbiased, consistent, and efficient, because estimators tend to perform better if
they have these three qualities.

2Another term is “sample”, which typically refers to a collection of realizations, though an individual
realization can also be called a sample
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An estimator Λ̂ is an unbiased estimator of Λ if the expectation of the estimator is the
quantity estimated,

E[Λ̂] = Λ . (3.21)

An estimator is consistent if it converges in probability to the quantity estimated,

lim
N→∞

P (|Λ̂− Λ| < ϵ) = 1 , (3.22)

for some arbitrary ϵ > 0. Finally, an estimator Λ̂1 is more efficient than Λ̂2 if it has smaller
variance,

Var[Λ̂1] < Var[Λ̂2] . (3.23)

Because the random variables X1, . . . , XN in Eq. (3.20) are identically distributed,

E[Xi] = µ ∀i ∈ {1, . . . , N} , (3.24)

and
Var[Xi] = σ2 ∀i ∈ {1, . . . , N} . (3.25)

This lets us derive E[X̄] and Var[X̄], which I show in detail in order to highlight the properties
of the E[·] and Var[·] functionals. The expectation is,

E[X̄] = E

[
1

N

N∑

i=1

Xi

]

=
1

N
E

[
N∑

i=1

Xi

]

=
1

N

N∑

i=1

E[Xi]

=
1

N

N∑

i=1

µ

=
1

N
Nµ

= µ . (3.26)
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The variance is,

Var[X̄] = Var

[
1

N

N∑

i=1

Xi

]

=
1

N2
Var

[
N∑

i=1

Xi

]

=
1

N2

N∑

i=1

Var[Xi]

=
1

N2

N∑

i=1

σ2

=
1

N2
Nσ2

= σ2/N . (3.27)

Thus, X̄ has population mean µ and variance σ2/N . We conclude that X̄ is unbiased because
E[X̄] = µ.

We can show that X̄ converges in probability to µ using Chebyshev’s inequality,

P

(
|X̄ − µ| < kσ√

N

)
≥ 1− 1

k2
. (3.28)

Letting k = ϵ
√
N/σ gives,

P (|X̄ − µ| < ϵ) ≥ 1− σ2

Nϵ2
. (3.29)

Taking the limit of both sides gives,

lim
N→∞

P (|X̄ − µ| < ϵ) = 1 . (3.30)

Thus, X̄ is a consistent estimator of µ.
Finally, we can compare the efficiencies of X̄ withX1 by comparing their variances. Given

that Var[X1] = σ2 and,

Var[X̄] =
σ2

N
< σ2 if N > 1 , (3.31)

we conclude that X̄ is more efficient than X1 for N > 1. This analysis, which demonstrated
that X̄ is unbiased and consistent, and that X̄ is more efficient than X1 for N > 1, supports
our intuition that X̄ outperforms X1 for the task of estimating E[X] = µ.
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3.1.4 Central Limit Theorem

The Law of Large Numbers says that our approximation of the PMF for the coin flipping
experiment converges to the true PMF as the number of coin flips goes to infinity, as expressed
by Eq. (3.6). It also says that the sample mean X̄, which is an estimator of µ, converges to µ
as the number of random variables N in the sum goes to infinity. However, the Law of Large
Numbers says nothing about the rate by which X̄ converges to µ, nor does it say anything
about the distribution of X̄ for N <∞. The Central Limit Theorem (CLT) describes both.

As before, let X1, X2, . . . , XN be iid random variables with finite mean µ = E[Xi] < ∞
and finite variance σ2 = Var[Xi] <∞, where i ∈ {1, 2, . . . , N}. The CLT states that,

X̄
d→ G

(
µ,
σ2

N

)
, (3.32)

where
d→ denotes convergence in distribution. Thus, the sample mean X̄, which is an es-

timator of µ, eventually becomes a Gaussian-distributed random variable. The PDF of X̄
becomes the Gaussian PDF in Eq. (3.14). From Eq. (3.32), the “standard error” of the
estimator X̄ is,

Standard error of X̄ =

√
σ2

N
. (3.33)

I refer to Eq. (3.33) as the “uncertainty” of the estimator. The factor of N−1/2 in Eq. (3.33)
implies that reducing the uncertainty of X̄ by a factor of 2 requires increasing N by a factor
of 4. If N is fixed, the only way to reduce the uncertainty of the estimator is to decrease
the variance σ2 of the iid random variables Xi, perhaps by choosing a different set of iid
random variables Yi. Techniques which decrease the variance are called “variance reduction
techniques”.

The 1/
√
N convergence of Monte Carlo methods is due to the CLT. Quasi-Monte Carlo,

which uses quasi-random numbers instead of pseudorandom numbers, improves the con-
vergence of Monte Carlo from 1/

√
N to 1/N , but is not widely used in radiative transfer

because of characteristics of low-discrepancy sequences which violate assumptions that are
valid only for (pseudo-)random number sequences. See J. Spanier’s review in Chapter 3 of
the manuscript compiled by Azmy and Sartori [67] for details.

3.2 Monte Carlo Simulation as Integral Estimation

Many popular introductory numerical analysis texts have whole chapters on numerical inte-
gration using quadrature methods, but almost none of them mention Monte Carlo integra-
tion. A good example of this is the textbook by Burden et al. [68]. In a very nice chapter
on numerical differentiation and integration, the authors prove the double degree minus one
result for Gaussian quadrature, describe error estimation for adaptive quadrature, and show
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examples of quadrature rules for multiple integration up to 3D,

I =

∫ x2

x1

∫ y2

y1

∫ z2

z1

f(x, y, z) dz dy dx . (3.34)

Quadrature exceeding 3D may be unwise due to poor scaling of quadrature error relative
to Monte Carlo error due to the way that the error in the integral approximation scales
with the number of function evaluation points. I explain this important phenomenon in the
paragraphs that follow.

First, consider quadrature, which typically approximates the integrand as a polynomial,
and then integrates the polynomial exactly. The trapezoid rule approximates the integrand as
a linear polynomial by evaluating the integrand at two points x1 and x2 and then integrating
the linear function described by those points. The integral is equivalent to the area of
the eponymous trapezoid formed by legs of length f(x1) and f(x2) and bases of length
x2 − x1 and the length of the line segment connecting the function values. Subtracting the
expression for the area of the trapezoid from a Taylor series expansion of the integrand at the
evaluation points cancels the constant and first derivative term, leaving the quadratic term
as the largest contributor to the trapezoid rule approximation error. For N equally-spaced
evaluation points, the trapezoid rule approximation error is thus O(1/N2).

Second, consider Monte Carlo integration, which approximates the integrand as a con-
stant, and then integrates the constant exactly3. The constant is an average of the function
sampled at randomly selected points on the domain of integration. Thus, we may estimate
the integral,

I =

∫ b

a

f(x) dx a < b , (3.35)

using Monte Carlo as,

Î =
b− a
N

N∑

i=1

f(Xi) , (3.36)

where Xi ∼ U(a, b) are iid random variables. First, note that we will always need to
generate random variates in order to compute quantities like the Î estimator in Eq. (3.37),
so henceforth in this dissertation I write estimator equations like Eq. (3.37) using,

Î =
b− a
N

N∑

i=1

f(xi) , (3.37)

where xi are random variates of the random variable X ∼ U(a, b). This is a shorthand
expression for the more accurate statement that there are actually N iid random variables
Xi ∼ U(a, b), where i = 1, . . . , N , and that X1, . . . , XN are the random variables for which
one must generate the random variates in Eq. (3.36).

3The juxtaposition of quadrature approximating the integrand as a polynomial and MC as a constant is
nicely illustrated by Figure 2.1 in Nakatsukasa [69].
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Also, notice that Eq. (3.36) is nearly identical to the sample mean X̄ defined by Eq. (3.20).
If the domain of integration is the unit line segment x ∈ [a, b] = [0, 1], then Eqs. (3.20)
and (3.36) are both simple averages: Eq. (3.20) is the average of the random variates and
Eq. (3.36) is the average of the function evaluations.

Finally, a comparison of the trapezoid rule error and the Monte Carlo uncertainty shows
that reducing the error of the numerical integral by a factor of 4 requires only 2x more
evaluations, whereas reducing the uncertainty of the Monte Carlo estimate by a factor of 4
requires 16x more evaluations,

Monte Carlo uncertainty ≈ N−1/2

Trapezoid rule error ≈ N−2 . (3.38)

It would appear that the trapezoid rule significantly outperforms Monte Carlo. This is defi-
nitely true if the integral we wish to compute is just one dimensional. However, integration
in k dimensions divides quadrature error exponents by k, but not the MC error. Thus, MC
outperforms trapezoid rule for integration exceeding 4D, as identified in Lux and Koblinger
[64]. Some complications muddy this analysis. There are higher order quadrature rules that
have error exponents smaller than negative 2. There is also an active field of research into
quasi-Monte Carlo (QMC), which uses numbers from a low-discrepancy sequence instead of
random variates, and thereby can achieve an error exponent of negative unity, which is 2x
better than the negative one half error exponent of MC4. In addition to increasing N or
employing a low-discrepancy sequence, the uncertainty in Monte Carlo methods can also be
minimized by reducing the variance of the estimator used to approximate the integral.

3.3 Monte Carlo Integration of Linear Transport

The linear transport Eq. (1.13a) and its boundary condition Eq. (1.13b) are not integrals. It
would be useful if we had an integral which was equivalent to Eq. (1.13a) because it would
allow us to derive an estimator for the solution to Eq. (1.13a). If we had an estimator for the
integral then we could also derive functions of the estimator, like the variance. The approach
taken in section 2.4 of Spanier and Gelbard [65] and section 4.III in Lux and Koblinger [64]
is to introduce the collision and emission densities, derive a Fredholm integral equation of
the second kind (FIESK), then derive an estimator for the solution to the FIESK.

My approach begins with the characteristic equation, which I derive in section 3.3.1. Note
that I use the characteristic equation only to derive Monte Carlo estimators. I do not use
the Method of Characteristics (MOC), which is a deterministic numerical method based on
the characteristic equation [71]. Nor do I use its hybrid successor known as the Random Ray
Method (TRRM) [72]. I simply mention [71] and [72] as other cases where the authors used
the characteristic equation to develop methods for solving the linear transport equation.

4For a discussion of QMC for solving the transport equation, which has thus far seen limited success,
see J. Spanier’s review in Chapter 3 of the manuscript compiled by Azmy and Sartori [67]. Two examples
of recently-developed MC transport methods employing QMC are [35] and [70].



61

3.3.1 Derivation of Characteristic Equation

The goal in this section is to derive an equation called the characteristic equation, which we
will use to derive the estimators in the HSM method. Consider the steady-state, gray, linear
transport Eq. (1.13a) rewritten slightly,

Ω · ∇ψ(x,Ω) + σtψ(x,Ω) = Q(x,Ω) x ∈ D , (3.39a)

where σt = σt(x), Q(x,Ω) =
σs
4π
φ(x) + q(x,Ω), and σs = σs(x). Eq. (3.39a) is subject to

the boundary condition,

ψ(x,Ω) = ψ̄(x,Ω) , x ∈ ∂D and Ω · n < 0 . (3.39b)

In Eq. (3.39a), φ(x) is a known quantity that replaces the unknown quantity,

∫

S2
ψ dΩ′ , (3.40)

which appears in Eq. (1.13a). This simplification of the scattering source is exclusive to
methods which do not have scattering events, but rather compute φ(x) in an iteration.
HSM uses a moment solve to compute φ(x). Methods which do not compute φ(x) can
incorporate the effect of the scattering term with scattering events.

To begin the derivation, observe that in Eq. (3.39a), Ω · ∇ψ = Ωx∂ψ/∂x + Ωy∂ψ/∂y +
Ωz∂ψ/∂z. Now consider the notation change,

x→ r − sΩ = (rx − sΩx, ry − sΩy, rz − sΩz)
T , (3.41)

where s is the length of the ray emanating from r in the negative Ω direction. The position
x has the following derivatives with respect to the new parameter s,

dx

ds
= −Ωx

dy

ds
= −Ωy

dz

ds
= −Ωz . (3.42)

The total derivative of ψ with respect to the new spatial parameter s is,

dψ

ds
=
∂ψ

∂x

dx

ds
+
∂ψ

∂y

dy

dx
+
∂ψ

∂z

dz

ds

= −
(
∂ψ

∂x
Ωx +

∂ψ

∂y
Ωy +

∂ψ

∂z
Ωz

)

= −Ω · ∇ψ . (3.43)

Applying the notation change to Eq. (3.39a) gives,

− d

ds
ψ(r − sΩ,Ω) + σtψ(r − sΩ,Ω) = Q(r − sΩ,Ω) , (3.44a)
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where σt = σt(r− sΩ), Q(r− sΩ,Ω) = σs
4π
φ(r− sΩ) + q(r− sΩ,Ω), and σs = σs(r− sΩ).

The boundary condition is,

ψ(r − sΩ,Ω) = ψinc(r − s0Ω,Ω) , s0 ∈ ∂D and Ω · n < 0 , (3.44b)

where I have replaced the ψ̄ notation with ψinc to make the symbol easier to visually distin-
guish from ψ, and s0(r,Ω) denotes the minimum distance from r to the boundary ∂D when
traveling in negative Ω direction (see Fig. 3.1). Mathematically,

s0(r,Ω) = min{s | r − sΩ ∈ ∂D} . (3.45)

Define an integrating factor,
I(s) = e−

∫ s
0 σt(r−ηΩ) dη, (3.46)

which has a derivative of,
dI

ds
= −σt(r − sΩ)I . (3.47)

Multiply Eq. (3.44a) by the integrating factor in Eq. (3.46) to get,

− d

ds
ψI + σtψI = IQ

− d

ds
(ψI) = IQ

−
∫ s0

0

d

ds
(ψI) ds =

∫ s0

0

IQ ds

−(ψ(s0,Ω)I(s0)− ψ(0,Ω)I(0)) =

∫ s0

0

IQ ds

ψ(0,Ω)I(0)− ψ(s0,Ω)I(s0) =

∫ s0

0

IQ ds

ψ(r,Ω) = ψ(r − s0Ω,Ω)I(s0) +

∫ s0

0

IQ ds

ψ(r,Ω) = e−
∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) +

∫ s0

0

IQ ds . (3.48)

Substituting Eq. (3.46) once more into Eq. (3.48) gives the final result,

ψ(r,Ω) = e−
∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) +

∫ s0

0

e−
∫ s
0 σt(r−ηΩ) dηQ(r − sΩ,Ω) ds . (3.49)

Imagine placing a detector at the phase-space location (r,Ω) denoted by the black dot
located at r in Fig. 3.1. The first term in the characteristic Eq. (3.49) accounts for particles
sourced on the domain boundary ∂D with direction Ω and exponentially attenuated en route
to the detector, and the second term accounts for particles sourced anywhere along s0 with
direction Ω and exponentially attenuated en route to the detector.
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x

y

D
∂D

r

Ω

s0

Figure 3.1: Distance to domain boundary s0(r).

3.3.2 Derivation of ϕ̂ Estimator

The goal in this section is to derive an estimator for the angle integrated intensity, ϕ(x),
which I denote ϕ̂. Why estimate ϕ(x) instead of ψ(x,Ω)? Almost all radiative transfer
applications need the angle integrated intensity and almost none need the angular intensity.
For example, applications often require the radiation energy absorbed by the matter in a
volume, which is the product of the intensity and the absorption opacity integrated over all
five dimensions, ∫

V

∫

S2
ψ(x,Ω)σa(x) dΩ dx =

∫

V

ϕ(x)σa(x) dx , (3.50)

where I used the definition of ϕ(x) in Eq. (1.17) and V is the volume of interest. Eq. (3.50)
shows that estimating ψ to compute Eq. (3.50) would be less accurate because it would
require approximating its angular integral, whereas estimating ϕ to compute Eq. (3.50) does
not require subsequent integration. It would also be wasteful to estimate ψ because it would
unnecessarily consume computer memory for storing some representation of the solution
along the Ω dimensions. A final reason to prefer ϕ̂ is that we can use ϕ̂ to compute the
SMM correction tensor T, defined in Eq. (1.42). We do not need to use ψ to compute it.

The derivation of ϕ̂ follows the following sequence of steps and substeps ending with
random variate generation:

1. Formally integrate the characteristic equation over all directions and over the volume
enclosed by a single mesh element,

2. Estimate the integral using Monte Carlo,
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a) Change variables such that s = 0 defines a point on ∂D instead of D,
b) Define sampling procedures for the volume and boundary sources,

i. Define random variables, a joint PDF, and a function of the random variables
such that the expectation of the function is the integral that we want to
compute,

ii. Define the techniques for generating the random variates of the random vari-
ables that we defined.

All the above steps are covered here, except for the random variate generation, which will be
discussed in section 3.3.4. Our derivation of ϕ̂ begins by integrating Eq. (3.49) over angle,

∫

S2
ψ(r,Ω) dΩ =

∫

S2
e−

∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) dΩ

+

∫

S2

∫ s0

0

e−
∫ s
0 σt(r−ηΩ) dηQ(r − sΩ,Ω) ds dΩ . (3.51)

We impose the same spatial discretization concept used in the deterministic component of
HSM and described by Eq. (2.1). That is, we impose a mesh. We represent the quantity
described by Eq. (3.51) as a piecewise constant function that is single-valued on each mesh
element by averaging Eq. (3.51) over an arbitrary element K,

1

vol(K)

∫

K

∫

S2
ψ(r,Ω) dΩdr =

1

vol(K)

∫

K

∫

S2
e−

∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) dΩdr

+
1

vol(K)

∫

K

∫

S2

∫ s0

0

e−
∫ s
0 σt(r−ηΩ) dηQ(r − sΩ,Ω) ds dΩdr . (3.52)

Eq. (3.52) is an integral equation for the classic piecewise constant Monte Carlo estimator of
the angle integrated intensity. The left-hand side of Eq. (3.52) can be approximated using
Monte Carlo integration, just like the model integration problem in Eq. (3.35). Eq. (3.52) is
a linear transport equation that is more suitable to Monte Carlo integration than the linear
transport Eq. (1.13a). If we knew ψ, then the Monte Carlo approximation of Eq. (3.52)
could be written as,

1

vol(K)

∫

K

∫

S2
ψ(r,Ω) dΩdr ≈ 4π

N

N∑

n=1

ψ(r(n),Ω(n)) , (3.53)

where r(n) and Ω(n) are random variates of uniform iid random variables in space and angle,
respectively. We do not know ψ, so the rest of this section describes how to use the right-hand
side of Eq. (3.52) to compute the sum in Eq. (3.53). Consider the change of variables,

r′ = r − sΩ, Ω′ = Ω, s′ = s . (3.54)
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Let S ∼ exponential(σt(r
′+sΩ)) be a random variable representing the distance traveled by

a MC photon originating from the point r′ and traveling in the direction Ω before it collides
with an electron in the matter. We refer to s as the “path length”. The PDF for the path
length s given a fixed position r′ and direction Ω is,

pσt(s) = σt(r
′ + sΩ)e−

∫ s
0 σt(r′+ηΩ) dη . (3.55)

Define the distance traveled in element K as,

τ(r′,Ω, s;K) =





0 s < s1(r
′,Ω;K) ,

s− s1(r′,Ω;K) s1(r
′,Ω;K) ≤ s ≤ s2(r

′,Ω;K) ,

s2(r
′,Ω;K)− s1(r′,Ω;K) s2(r

′,Ω;K) > s ,

(3.56a)

where s1 and s2 are the distances to the entry point and exit points ofK alongΩ, respectively,

s1(r
′,Ω;K) = min{s | r′ + sΩ ∈ ∂K} , (3.56b)

s2(r
′,Ω;K) = max{s | r′ + sΩ ∈ ∂K} . (3.56c)

Fig. 3.2 shows r′ along with three possible absorption locations corresponding to three values
of τ . Observe that r′ ∈ ∂D. The final step in this change of variables r → r′ is to relate the
volume elements dr and dr′.

x

y

D
∂D

r′

s2

K

∂K

s1

Figure 3.2: Distance to element entry s1(r
′) and exit s2(r

′) and three possible absorption
locations marked by X’s along the path r′+sΩ. Here, τ = 0 for the X closest to r′, τ = s−s1
for the middle X, and τ = s2 − s1 for the far X.
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Let n(r′) denote the surface normal vector at r′ ∈ ∂D. Consider the volume, made by
an infinitesimal area element dA on the boundary ∂D extruded by distance ds in direction
Ω,

{r′ + sΩ | r′ ∈ dA ⊂ ∂D, s ∈ ŝ+ ds} . (3.57)

In two spatial dimensions, this volume is a function of the area of the parallelogram in
span{n,n⊥}, where n⊥ is the unit vector perpendicular to the surface normal n, formed
from n · n⊥ = 0 and shown in Fig. 3.3. The volume is,

ds dA |n⊥ ×Ω| = ds dA

∣∣∣∣det
(
n2 Ω1

−n1 Ω2

)∣∣∣∣

= ds dA |n2Ω2 + n1Ω1|
= ds dA |Ω · n| . (3.58)

The subscripts in Eq. (3.58) denote the entry number of the value in the corresponding
vector. Also note that,

∫ s

0

σt(r − ηΩ) dη =

∫ s

0

σt(r
′ + (s− η)Ω) dη . (3.59)

Letting η̃ = s− η, so dη̃ = − dη, we have,

∫ s

0

σt(r
′ + (s− η)Ω) dη = −

∫ 0

s

σt(r
′ + η̃Ω) dη̃

=

∫ s

0

σt(r
′ + ηΩ) dη . (3.60)

Therefore, the integrand which is expressed in r coordinates,

e−
∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) dr (3.61)

can be equivalently represented as an integrand in r′ coordinates,

e−
∫ s
0 σt(r′+ηΩ) dηψinc(r

′,Ω) |Ω · n| ds dA . (3.62)

The change of variables r → r′ generates a factor of |Ω ·n| in the boundary surface integral
because the infinitesimal volume element dr is equal to |Ω · n| ds dA in r′ coordinates.

It is convenient to treat the two terms on the right-hand side of Eq. (3.52) as distinct
sources of MC photons. The term withQ is a volume source and we handle it according to the
description inVolume source contribution to ϕ̂. The term with ψinc is an inflow boundary
source and we handle it according to the description in Boundary source contribution to
ϕ̂. We then describe how we sample these two sources in Random Variate Generation.
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D
∂D

r′

r
Ω

s

(a) Change of variables.

D
∂D

r′

r

dsΩ

dAn⊥

dsΩ

dAn⊥

(b) Volume scaling from change of variables.

Figure 3.3: The change of variables r → r′ generates a factor of |Ω · n| in the boundary
surface integral because dr = |Ω · n| ds dA.

Volume source contribution to ϕ̂

Let R ∼ U(D), ω ∼ U(S2), and S ∼ exponential(σt(R + sω)) be random variables repre-
senting the initial position, direction, and distance traveled by a MC photon from the volume
source, respectively. Define the joint PDF of R,ω, and S as,

p(r′,Ω, s) =
1

vol(D)
1

4π
pσt(r

′,Ω, s) , (3.63)

with domain A = D×S2× [0,∞) and pσt(r
′,Ω, s) defined in Eq. (3.55). Eq. (3.63) is a PDF

because,
p(r′,Ω, s) ≥ 0 ∀(r′,Ω, s) ∈ A , (3.64a)

and ∫

A
p(r′,Ω, s) ds dΩdr′ = 1 . (3.64b)

Define a function f(R,ω, S) of the random variables R,ω, and S which represents the
contribution of the volume source Q(r′,Ω) to the angle integrated intensity ϕ,

f(R,ω, S) = 4π vol(D)Q(r′,Ω) τ(r′,Ω, s;K) . (3.65)

If ψinc = 0 then Eq. (3.52) can now be written in terms of the expectation of f(R,ω, S),

1

vol(K)
E
[
f(R,ω, S)

]
=

1

vol(K)

∫

D

∫

S2

∫ ∞

0

f(r′,Ω, s) p(r′,Ω, s) ds dΩdr′ , (3.66)
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where p(r′,Ω, s) is the joint PDF defined in Eq. (3.63). The Monte Carlo approximation of
the expectation in Eq. (3.66) is,

E
[
f(R,ω, S)

]
≈ 1

N

N∑

n=1

f
(
r(n),Ω(n), s(n)

)
, (3.67)

where
(
r(n),Ω(n), s(n)

)
, n = 1, . . . , N, are random variates of the random variables R,ω,

and S. Substituting Eq. (3.65) into Eq. (3.67) gives,

1

N

N∑

n=1

f
(
r(n),Ω(n), s(n)

)
=

4π vol(D)
N

N∑

n=1

Q
(
r(n),Ω(n)

)
τ
(
r(n),Ω(n), s(n);K

)
. (3.68)

Eq. (3.68) is the contribution of the volume source to the ϕ̂ estimator. The sum in Eq. (3.68)
is over all N particles sourced in the volume D. We can rewrite Eq. (3.68) as a sum over
all volume source particle paths traversed in some element K. Assume that volume source
particle n traversed path i in element K and define its weight as,

wi =
4π vol(D)

N
Q
(
r(n),Ω(n)

)
. (3.69)

Define the length of path i as,

di = τ
(
r(n),Ω(n), s(n);K

)
. (3.70)

Eq. (3.68) can now be rewritten as the sum over paths traversed by volume source particles
in K, ∑

i=1

widi . (3.71)

Multiplying Eq. (3.71) by the inverse volume in front of the expectation in Eq. (3.66) gives
us our final result for the contribution of the volume source to the estimator ϕ̂ on K,

1

vol(K)

∑

i=1

widi . (3.72)

Boundary source contribution to ϕ̂

Let Rb ∼ U(∂D), ωh ∼ U(S2
h), and Sb ∼ exponential(σt(Rb + sωh)) be random variables

representing the initial position, direction, and distance traveled by a MC photon from the
boundary source, respectively, where S2

h is all directions on the unit hemisphere defined by
Ω · n < 0. Define the joint PDF of Rb,ωh, and Sb as,

ρ(r′,Ω, s) =
1

area(∂D)
1

2π
pσt(r

′,Ω, s) , (3.73)
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with domain B = ∂D × S2
h × [0,∞) and pσt(r

′,Ω, s) defined in Eq. (3.55). Eq. (3.73) is a
PDF because,

ρ(r′,Ω, s) ≥ 0 ∀(r′,Ω, s) ∈ B , (3.74a)

and ∫

B
|Ω · n| ρ(r′,Ω, s) ds dΩdA = 1 . (3.74b)

Define a function g(Rb,ωh, Sb) of the random variables Rb,ωh, and Sb which represents the
contribution of the boundary source ψinc(r

′,Ω) to the angle integrated intensity ϕ,

g(Rb,ωh, S) = 2π area(∂D)ψinc(r
′,Ω) τ(r′,Ω, s;K) . (3.75)

If Q = 0 then Eq. (3.52) can now be written in terms of the expectation of g(Rb,ωh, Sb),

1

vol(K)
E
[
g(Rb,ωh, S)

]
=

∫

∂D

∫

Ω·n<0

∫ ∞

0

|Ω · n| g(r′,Ω, s) ρ(r′,Ω, s) ds dΩdA , (3.76)

where ρ(r′,Ω, s) is the joint PDF defined in Eq. (3.73). The Monte Carlo approximation of
the expectation in Eq. (3.76) is,

E
[
g(Rb,ωh, S)

]
≈ 1

M

M∑

m=1

g
(
r
(m)
b ,Ω

(m)
h , s

(m)
b

)
, (3.77)

where
(
r
(m)
b ,Ω

(m)
h , s

(m)
b

)
, m = 1, . . . ,M, are random variates of the random variables Rb,ωh,

and Sb. Substituting Eq. (3.75) into Eq. (3.77) gives,

1

M

M∑

m=1

g
(
r
(m)
b ,Ω

(m)
h , s

(m)
b

)

=
2π area(∂D)

M

M∑

m=1

|Ω(m)
h · n|ψinc

(
r
(m)
b ,Ω

(m)
h

)
τ
(
r
(m)
b ,Ω

(m)
h , s

(m)
b ;K

)
. (3.78)

Eq. (3.78) is the contribution of the boundary source to the ϕ̂ estimator. The sum in
Eq. (3.78) is over all M particles sourced on the surface ∂D. We can rewrite Eq. (3.78) as
a sum over all boundary source particle paths traversed in some element K. Assume that
boundary source particle m traversed path j in element K and define its weight as,

wj =
2π area(∂D)

M
|Ω(m)

h · n|ψinc

(
r
(m)
b ,Ω

(m)
h

)
. (3.79)

Define the length of path j as,

dj = τ
(
r
(m)
b ,Ω

(m)
h , s

(m)
b ;K

)
. (3.80)
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Eq. (3.78) can now be rewritten as the sum over paths traversed by boundary source particles
in K, ∑

j=1

wjdj . (3.81)

Multiplying Eq. (3.81) by the inverse volume in front of the expectation in Eq. (3.76) gives
us our final result for the contribution of the boundary source to the estimator ϕ̂ on K,

1

vol(K)

∑

j=1

wjdj . (3.82)

The estimator ϕ̂ is the sum of Eq. (3.72) and Eq. (3.82). Estimators like ϕ̂ are sometimes
called “path-length” estimators because of their dependence on the length of the particle
paths. One remaining challenge that we need to address in order to compute ϕ̂ is the
generation of random variates. Section 3.3.4 Random Variate Generation addresses this
challenge. The next section shows the derivation of ϕ̂s, which is similar to ϕ̂.

3.3.3 Derivation of ϕ̂s Estimator

The goal in this section is to derive an estimator for ϕ(x) on the domain boundary ∂D,
which I denote ϕ̂s. The subscript s denotes that ϕ̂s is a surface tally. This contrasts with
ϕ̂, derived in section 3.3.2, which is a volume tally. The domain of ϕ̂ is the mesh elements,
whereas the domain of ϕ̂s is mesh element faces. Why estimate ϕ(x) on boundary faces? We
need ϕ̂s to compute the SMM boundary correction factor β, defined in Eq. (1.45), but there
are many other applications which use boundary surface tallies to calculate domain bound-
ary phenomena. One example is energy leakage, which is an important domain boundary
phenomenon that one could calculate using a boundary surface tally resembling ϕ̂s.

The derivation of ϕ̂s follows the same sequence of steps and substeps as ϕ̂ except in
step 1. Specifically, after integrating the characteristic equation over all directions, we then
integrate over the surface defined by a single boundary face in the mesh, rather than the
volume enclosed by a single mesh element. Thus, we begin by averaging Eq. (3.51) over an
arbitrary boundary face F ∈ Γb,

1

area(F)

∫

F

∫

S2
ψ(r,Ω) dΩdF =

1

area(F)

∫

F

∫

S2
e−

∫ s0
0 σt(r−ηΩ) dηψinc(r − s0Ω,Ω) dΩdF

+
1

area(F)

∫

F

∫

S2

∫ s0

0

e−
∫ s
0 σt(r−ηΩ) dηQ(r − sΩ,Ω) ds dΩdF . (3.83)

If we knew ψ, then the Monte Carlo approximation of Eq. (3.83) could be written as,

1

area(F)

∫

F

∫

S2
ψ(r,Ω) dΩdF ≈ 4π

N

N∑

n=1

ψ(r(n),Ω(n)) , (3.84)
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where r(n) and Ω(n) are random variates of uniform random variables in space and angle,
respectively. We do not know ψ, so the rest of this section describes how to use the right-
hand side of Eq. (3.83) to compute the sum in Eq. (3.84). We use the change of variables in
Eq. (3.54) and the PDF in Eq. (3.55) and define the indicator function for crossing F as,

Y (r′,Ω, s;F) =
{
0 s < sd(r

′,Ω;F) ,
1 sd(r

′,Ω;F) ≥ s ,
(3.85a)

where sd is the minimum distance to the boundary face F along Ω,

sd(r
′,Ω;F) = min{s | r′ + sΩ ∈ F , F ∈ Γb} . (3.85b)

Fig. 3.4 shows the distance sd. The final step in this change of variables r → r′ is to relate
the surface elements dF and dA, where the dF is a patch on the domain boundary defined
in r coordinates and dA is a patch on the domain boundary defined in r′ coordinates. Using
similar arguments as those given in section 3.3.2 where we related the volume elements dr
and dr′, it can be shown that,

dF =
1

|Ω · n| dA . (3.86)

Following the same partitioning into volume source and boundary source estimator contri-
butions given in section 3.3.2, and then combining, one can derive the ϕ̂s estimator,

ϕ̂s =
2

area(F)
∑

i

wi

|Ωi · n|
, (3.87)

where the sum in Eq. (3.87) is over all particles which cross the face F ∈ Γb. The sum
includes both volume source particles and boundary source particles.

3.3.4 Random Variate Generation

We need to generate the following random variates to estimate ϕ̂ and ϕ̂s:

• r(n) and Ω(n) of the R ∼ U(D) and ω ∼ U(S2) random variables, respectively, for the
volume source particles,

• r
(m)
b and Ω

(m)
h of the Rb ∼ U(∂D) and ωh ∼ U(S2

h) random variables, respectively, for
the boundary source particles, and

• s(n) and s
(m)
b of the S ∼ exponential(σt(R+ sω)) and Sb ∼ exponential(σt(Rb + sωh))

random variables for the volume source and boundary source particles, respectively.

We begin by assuming the existence of a pseudo random number generator (PRNG) capable
of generating random variates of a X ∼ U(0, 1) random variable. The tradeoffs of different
PRNG implementations and the associated theory are outside the scope of this dissertation,
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Figure 3.4: Distance to element boundary face sd.

but can be found in Chapter 2 “Random Numbers” of the monograph by Knuth [73]. For
our demonstration of the HSM method, we need two different transformations of U(0, 1)
random variates. The first transformation is just scaling and shifting the interval of the
U(0, 1) distribution from the unit segment (0, 1) to an arbitrary interval (a, b). The second
transformation is slightly more complicated and involves a function inversion.

Any random variable which is uniform on some interval (a, b), where a and b are constants
such that a < b, can be formed by scaling X ∼ U(0, 1) by b− a and shifting by a. That is,
Y ∼ U(a, b) may be written as,

Y = Y (X) = (b− a)X + a . (3.88)

This is all we need for R,Rb,ω, and ωh. For S and Sb, we will need a slightly more
complicated transformation of a U(0, 1) random variable that relies on yet another way of
characterizing the distribution of a random variable, the cumulative distribution function
(CDF). For a continuous random variable X, the CDF is the function F (x) = P (X ≤ x)
defined as,

F (x) =

∫ x

−∞
f(x′) dx′ . (3.89)

If X ∼ exponential(λ) then the CDF of X is,

F (x) =

{
0 x ≤ 0 ,

1− e−λx x > 0 .
(3.90)
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The inverse of Eq. (3.90) is then,

F−1(u) = − ln(u)

λ
, (3.91)

where 0 < u < 1 is a random variate of a U(0, 1) random variable and where we used the
fact that (1−X) ∼ U(0, 1) if X ∼ U(0, 1) to simplify the numerator from ln(1− u) to ln(u)
in Eq. (3.91). A random variate x of X ∼ exponential(λ) is now computable as,

x← − ln(u)

λ
. (3.92)

This transformation is sometimes called the “inverse-CDF” technique, and Eq. (3.92) is an
example of the inverse-CDF technique applied to the generation of random variates of an
exponential random variable. The inverse-CDF technique relies on the existence of a U(0, 1)
PRNG and the invertibility of the CDF.

With Eqs. (3.88) and (3.92), we are now ready to describe the random variate generation
techniques for the R,Rb,ω,ωh, S, and Sb random variables. Consider first the random
variables R and Rb for particle positions. The positions in the volume r(n) are random
variates of R ∼ U(D), and the positions on the boundary r

(m)
b are random variates of Rb ∼

U(∂D). If D = [0, 1]2, then R = (Rx, Ry) where Rx ∼ Ry ∼ U(0, 1) and Rb = (Rbx, Rby)
where,

Rbx =





0 x = 0 ,

1 x = 1 ,

U(0, 1) y = 0 ,

U(0, 1) y = 1 .

Rby =





U(0, 1) x = 0 ,

U(0, 1) x = 1 ,

0 y = 0 ,

1 y = 1 .

(3.93)

The directions Ω(n) of particles sourced in the volume are random variates of ω ∼ U(S2).
Let ω = (ωx, ωy, ωz) and ωx = sinΘ cosΦ, ωy = sinΘ sinΦ, and ωz = cosΘ. Then,

Θ = cos−1
(
U(−1, 1)

)
, (3.94a)

Φ = U(0, 2π) . (3.94b)

It may seem odd that Eq. (3.94a) first generates random cos θ variates on [−1, 1] and then
inverts cosine when one could omit the inverse and simply generate θ variates on [0, π].
No inverse is required for generating random azimuthal angle variates, as can be seen in
Eq. (3.94b), which defines the azimuthal angle variates as U(0, 2π) variates. The reason for
this extra step is that if we generated θ variates on [0, π], we would get undesirable clustering
of our Ω(n) variates at the poles of the unit sphere (see Fig. 3.5). This is because the Jacobian
determinant relating the area of a patch in Cartesian coordinates to the area of a patch on
the surface of the unit sphere is nonlinear in the polar angle θ. Let a be some radius, then
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Ω = Ω(θ, ϕ, a) = (a sin θ cosϕ, a sin θ sinϕ, a cos θ) = (Ω1,Ω2,Ω3). Let x = (x1, x2, x3) be
Cartesian coordinates. The Jacobian matrix is Jij = ∂Ωi/∂xj and det J = a2 sin θ therefore
dΩ = a2 sin θ dθ dϕ da = sin θ dθ dϕ because a = 1 for the unit sphere. The function sin θ is
nonlinear in θ.

The directions Ω
(m)
h of particles sourced on the boundary are random variates of ωb ∼

U(Ω · n < 0). The inequality Ω · n < 0 defines the hemisphere of domain-inward directions.
If D = [0, 1]2, then ωb is defined by the azimuthal half-domains,

Φ =





U(−π
2
, π
2
) x = 0 ,

U(π
2
, 3π

2
) x = 1 ,

U(0, π) y = 0 ,

U(π, 2π) y = 1 .

(3.95)

The volume source particle distances s(n) and boundary source particle distances s
(m)
b are

random variates of the random variables,

S ∼ exponential(σt(r
(n) + sΩ(n))) , (3.96a)

and
Sb ∼ exponential(σt(r

(m)
b + sΩ

(m)
h )) , (3.96b)

respectively. In Eqs. (3.96a) and (3.96b), I have made the following substitutions:

R← r(n) , (3.97a)

and
ω ← Ω(n) , (3.97b)

as well as
Rb ← r

(m)
b , (3.97c)

and
ωh ← Ω

(m)
h . (3.97d)

The substitutions Eqs. (3.97a) to (3.97d) in Eqs. (3.96a) and (3.96b) emphasize that we
generate random variates for the position and direction before generating random variates
for the distances. This is because the distance that a photon travels before it collides with
an electron in the matter depends on the position where it starts and the direction that it
is traveling.

The technique for generating these s(n) and s
(m)
b random variates is to express S and Sb

as piecewise functions of constant-rate exponential random variables Si ∼ exponential(σi),
which have PDF,

pi(s) = σie
−σis , s ≥ 0 . (3.98)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: One thousand random variates generated from a random variable that is uniform
in direction (left column) versus uniform in polar angle (right column). The histogram in (f)
shows that the points on the sphere in (b) are highly clustered at the poles. The histograms
in (d) and (e) have the same bin heights because I used the same seed to generate the 1000
variates plotted in the left column and the 1000 variates plotted in the right column.
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The i subscript in Eq. (3.98) denotes element i along the MC particle direction of travel in
the mesh. The σi in Eq. (3.98) is the value of σt in Ki, where we have assumed that σt is
piecewise constant and that all discontinuities in σt align with mesh boundaries. Let the
path lengths ŝi, i = 1, . . . , L correspond to element face intersection points along the ray
defined by position r′ and direction Ω,

r′ + ŝiΩ ∈ Ki ∩Ki+1 . (3.99)

Fig. 3.6 shows an example where i ∈ {1, 2, 3, 4, 5} because the MC particle traverses five
elements on a uniform 3-by-3 mesh of a square domain. With Eqs. (3.98) and (3.99), the
random variable S ∼ exponential(σt(r

′ + sΩ)) for any r′ and Ω can now be defined as,

S =





S1 S1 < ŝ1 ,

ŝ1 + S2 S1 > ŝ1 and ŝ1 + S2 < ŝ2 ,

ŝ2 + S3 ŝ1 + S2 > ŝ2 and ŝ2 + S3 < ŝ3 ,
...

...

ŝL−1 + SL ŝL−2 + SL−1 > ŝL−1 and ŝL−1 + SL < ŝL ,

(3.100)

and its PDF as,

P (ŝi−1 ≤ S ≤ ŝi) = P (Si ≤ ŝi − ŝi−1)
i−1∏

k=1

P (Sk ≥ ŝk) . (3.101)

Every capital “S” in Eqs. (3.100) and (3.101) with a subscript, such as Si, is an exponential
random variable with constant rate parameter σi, and PDF defined by Eq. (3.98). Thus,
Si ∼ exponential(σi), S1 ∼ exponential(σ1), SL ∼ exponential(σL), Sk ∼ exponential(σk),
etc. The factor in front of the product in Eq. (3.101) is just the PDF of Si ∼ exponential(σi).
The factors in the product are called survival functions. The survival function of a random
variable X is P (X ≥ x) and is equal to 1 − P (X ≤ x) = 1 − F (x) where F (x) is the CDF
of X. Substituting the PDF from Eq. (3.98) and the CDF from Eq. (3.90) into Eq. (3.101)
gives,

P (ŝi−1 ≤ S ≤ ŝi) = (1− e−σis)
i−1∏

k=1

e−σk ŝk . (3.102)

Thus, generating s(n) and s
(m)
b random variates is equivalent to sampling the exponential

distribution defined in the element K0, then K1, then K2, and so on until the particle is
absorbed in KL or escapes the domain boundary.

3.3.5 Summary of Fixed Source Integrals

There are three sources in Eqs. (1.13a) and (1.13b). The scattering source, which is the
product of σs/(4π) and φ, varies during the calculation because φ changes with every cycle
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K1
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ŝ3

ŝ4

ŝ5

Figure 3.6: A particle sourced in the lower-left of a square domain with a north-easterly direc-
tion traverses five elements in a uniform 3-by-3 mesh before escaping out the top boundary.

of the HSM iteration. The volume source q and the boundary source ψ̄, which we have
alternately referred to as ψinc in this chapter, are both “fixed” in the sense that they do
not vary during the calculation. This section summarizes the integrals that we compute
during sourcing of MC particles in the volume of D and on its boundary ∂D. The process
of creating the MC particles by sampling their positions and directions and assigning their
weights, which is called “sourcing”, is equivalent to Monte Carlo integration of the following
integrals. The description that follows summarizes the aforementioned sourcing process.

The fixed source q = q(x,Ω) is a volume source. Our method for assigning MC particle
weights to the volume source particles satisfies,

lim
N→∞

N∑

i=1

wi =

∫

D

∫

S2
q dΩdx , (3.103a)

where N is the number of MC particles sourced in the volume D, and

wi =
V

N
q(xi, yi, zi, θi, ϕi) , (3.103b)

with

V =

∫

D

∫

S2
dΩdx , (3.103c)
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defines the weight of particle i. Let U(a, b) be a uniformly-distributed random variate on
[a, b]. We use Monte Carlo to integrate,

∫

D

∫

S2
q dΩdx ≈ V

N

N∑

i=1

q(xi, yi, zi, θi, ϕi) , (3.103d)

xi ← U(xmin, xmax) , yi ← U(ymin, ymax) , (3.103e)

zi ← U(zmin, zmax) , θi ← cos−1(U(−1, 1)) , ϕi ← U(0, 2π) , (3.103f)

where V is defined by Eq. (3.103c), and the assumption that D is a rectangular prism
allowed us to write the position as random variates of uniform distributions. I made the
same rectangularity assumption in section 3.3.4 Random Variate Generation, where I let
D = [0, 1]2. Position variate generation in non-rectangular domains can be achieved using
acceptance-rejection with an inside-outside indicator function, which determines whether a
point lies inside or outside the region of definition of the volume source. Points generated
outside the desired region are discarded.

The fixed source ψ̄(x,Ω) is a boundary source. Our method for assigning MC particle
weights to the boundary source particles satisfies,

lim
M→∞

M∑

i=1

wi =

∫

∂D

∫

Ω·n<0

|Ω · n|ψ̄ dΩdx , (3.104a)

where M is the number of MC particles sourced on the surface ∂D, and

wi =
S

M
|Ωi · n|ψ̄(xi, yi, zi, θi, ϕi) , (3.104b)

with

S =

∫

∂D

∫

Ω·n<0

dΩdx , (3.104c)

defines the weight of particle i. We use Monte Carlo to integrate,

∫

∂D

∫

Ω·n<0

|Ω · n|ψ̄ dΩdx ≈ S

M

M∑

i=1

|Ωi · n|ψ̄(xi, yi, zi, θi, ϕi) , (3.104d)

where S is defined by Eq. (3.104c), the positions xi are sampled uniformly on ∂D, and the
directions Ωi are sampled uniformly on the hemisphere of the unit sphere defined byΩ·n < 0.

3.3.6 Monte Carlo Transport Algorithm

Algorithm 2 shows the definition of a function which implements the Monte Carlo solver
described in this chapter. The aim of Algorithm 2 is to clearly communicate the main logic.
Its style and especially its concision may lead to misunderstandings, which I attempt to
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address in the following explanation of its logic. Algorithm 2 is important because it defines
the logic inside the mc() call in the HSM algorithm that I will present in Algorithm 3.

My pseudocode in Algorithm 2 uses a vector arithmetic syntax inspired by NumPy5 [74].
This means that statements in Algorithm 2 manipulate arrays and use masking to operate
on array subsets. Vector arithmetic syntax is often concise. For example, the statement
c = a + b, which describes entry-by-entry addition of vectors a and b, is more concise
than the C-style indexing statement for(int i = 0; i < N; i++) c[i] = a[i] + b[i]

because the loop is implied in the vector arithmetic syntax. Vector arithmetic can also
expose parallelism that maps well to computer architectures with vector hardware.

In the description that follows, a sequence of “segments” constitutes a Monte Carlo
particle “history”. The history depicted in Fig. 3.6 has five segments. The first four are
“facet crossings”, meaning that the particle crossed into a new mesh element, and the final
segment is an “escape”, meaning that the particle crossed the domain boundary. Another
segment that appears in the histories is a “collision”, meaning that the photon represented
by the MC particle was absorbed due to an interaction with an electron in the matter.

My MC solver style is based on the event-based Monte Carlo algorithm [75]. This means
that every iteration of the loop processes one segment for every particle, in contrast to history-
based Monte Carlo, which processes an entire particle history before proceeding to the next
particle. Event-based MC can outperform history-based MC on graphics processing unit
(GPU) architectures with low kernel launch latencies because the event-based MC has smaller
kernels. A small kernel can have higher occupancy6 than a large kernel if the large kernel
has so much code that it exhausts the number of registers per thread permitted by the GPU
instruction set architecture (ISA), as often happens for history-based MC implementations.
Event-based kernels have higher occupancy than the equivalent history-based kernel, thus
event-based MC can provide the latency hiding required to progress from memory-latency
boundedness to memory-bandwidth boundedness [76]. Implementing memory-bandwidth
bound algorithms is the dominant strategy by which we can achieve good performance in
many scientific applications.

The most important variable elided from Algorithm 2 is the mesh. The mesh would
include a description of the element geometry, material properties, and topology. All are
required for determining which element a particle is sourced into, distances to ray-surface
intersection points, distances to collisions between the photons and the matter, and the
piecewise constant domain of definition for the computed estimators. The pervasiveness of
the mesh means that, if I had chosen to include it in my pseudocode, it would appear as an
argument in many of the function calls in Algorithm 2.

Line 1 shows the function name and function parameters, which have different types:
“vs” and “bs” are descriptions of the volume source and boundary source, respectively.

5My adoption of NumPy syntax is not an endorsement of Python for Monte Carlo solver implementations.
6On an Nvidia GPU, occupancy is a number between 0 and 1 which describes the fraction of the maximum

number of warps that can run simultaneously on a streaming multiprocessor (SM). If a kernel achieved 0.5
occupancy then it ran its logic on an SM at half the hardware-defined warp capacity. A warp is 32 threads.
An SM is roughly equivalent to a central processing unit (CPU) core. Higher occupancy is better.



80

A sensible choice for the type of vs and bs would be functions with arbitrary space- and
angle-dependence, which would accommodate the q(x,Ω) or Q(x,Ω) volume source and the
ψ̄(x,Ω) inflow boundary source. The “scattering events” parameter is of Boolean7 type.
Lines 2-3 sample the sources according to Eqs. (3.103d) and (3.104d). Important variables
elided from Algorithm 2 that are required during sourcing are the user-defined number of
particles to source on the volume and the boundary, which I designated as N and M in
Eqs. (3.68) and (3.78), respectively.

Line 4 creates estimator accumulators called “tallies” and initializes them to zero. Line
5 defines the loop conditional to prevent termination until all particles have been absorbed
or escaped the domain boundary. In practice, it can be useful to augment the conditional
to check that a segment counter, which increments every loop iteration, is less than some
user-defined threshold to ensure loop termination.

Lines 6-9 determine which particles cross their elements without collision and which
collide with the matter. Lines 10-11 move the particles, thereby generating terms in the
estimator sums, which we accumulate. Line 12 checks whether the Monte Carlo solve includes
scattering events. The MC solve would exclude scattering events if the linear transport being
solved omits the scattering term or if the contribution of the scattering term is included in
the volume source, as is the case for HSM. Lines 13-19 determine which particles undergo
scattering events and which particles undergo absorption events. A scattering event changes
the direction of a particle and an absorption event un-alives a particle. Line 21 un-alives the
particles because we determined in the conditional that the particles cannot have scattering
events, so the only event they undergo is absorption. Line 24 returns the tallies. Thus, the
output of the MC solve is the accumulated estimators.

3.4 Monte Carlo Integration of Second Moment

Method

Integrating the SMM using Monte Carlo requires augmenting the Monte Carlo transport
technique described in this chapter with two additional considerations: incorporation of
information from the moment solve into the Monte Carlo solve, and calculation of information
in the Monte Carlo solve for use in the moment solve. The former task requires using Monte
Carlo to integrate the scattering source, which I describe in section 3.4.1, and the latter
requires estimating the SMM data, which I describe in sections 3.4.2 and 3.4.3.

3.4.1 Derivation of Scattering Source Integral

The method for sampling the scattering source resembles that of the fixed source q except
we replace q in Eqs. (3.103a) and (3.103d) with the product of σs/(4π) and φ. The HSM
iteration, which I will describe in Chapter 4, involves calling Algorithm 2 in a loop with φ

7George Boole (1815-1864) was an English logician.



81

Algorithm 2 Monte Carlo Integration of Linear Transport

1: function mc(vs, scattering events, bs)
2: particles ← sample volume source(vs)
3: particles ← particles + sample boundary source(bs)
4: tallies ← 0
5: while any(particles.alive) do
6: intersection distances ← compute distances(particles)
7: collision distances ← sample distances(particles)
8: intersection mask ← intersection distances < collision distances
9: collision mask ← intersection distances > collision distances
10: tallies ← tallies + move across element boundary(particles[intersection mask])
11: tallies ← tallies + move to collision location(particles[collision mask])
12: if scattering events then
13: num random variates ← count(particles[collision mask])
14: random variates ← U(0, 1, num random variates)
15: scattering mask ← random variates < σs/σt
16: new directions ← sample direction(particles[collision mask][scattering mask])
17: particles[collision mask][scattering mask].direction ← new directions
18: absorption mask ← random variates > σs/σt
19: particles[collision mask][absorption mask].alive ← false
20: else
21: particles[collision mask].alive ← false
22: end if
23: end while
24: return tallies
25: end function

iterates that differ every cycle, which means that we need to recompute the particle weights
in every MC solve. The other parameters of the particles, which include the position and
direction random variates, remain unchanged. We thus reset the pseudo-random number
generator seed every cycle of the HSM iteration, which means that MC particles are sourced
with the same position and direction every cycle, but with different weights, because φ(i) ̸=
φ(i−1), where i is the cycle index of the HSM iteration. Fig. 3.7 shows that the HSM iteration
converges when we reset the seed (“Seed reset”) and that the iteration does not converge if
we do not reset the seed (“No seed reset”).

Averaging is an alternative to resetting the seed that allows for more sampling during
the iteration. The averaging procedure resembles the MC eigenvalue iteration process for
neutronics criticality calculations in which eigenvalue estimates during a user-specified num-
ber of “inactive” cycles are discarded, and estimates during the subsequent “active” cycles
are averaged, until a convergence criterion involving the average is satisfied. Averaging out-
performed seed resetting in the iterated Monte Carlo neutronics method of Pasmann [35].
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(a) Linear vertical axis. (b) Logarithmic vertical axis.

Figure 3.7: Resetting the pseudo-random number generator seed makes the HSM iteration
converge to machine precision.

3.4.2 Derivation of T̂ Estimator

The HSM method uses Monte Carlo to estimate the SMM correction tensor T. We defined
T in Eq. (1.42). We can rewrite Eq. (1.42) using the definitions in Eqs. (1.17) and (1.19) as,

T = P− 1

3
Iϕ . (3.105)

Also recall that we derived an estimator for ϕ that we called ϕ̂ in section 3.3.2. Multiplying
the characteristic Eq. (3.49) by Ω ⊗ Ω and proceeding with the derivation will give an
estimator for P instead of ϕ,

P̂ =
1

vol(K)

∑

i=1

Ωi ⊗Ωiwidi , (3.106)

where the sum in Eq. (3.106) is over all paths traversed by all particles in element K. The
sum includes both volume source particles and boundary source particles. Thus, we can
estimate the correction tensor T as,

T̂ = P̂− 1

3
Iϕ̂ . (3.107)

3.4.3 Derivation of β̂ Estimator

The HSM method also uses Monte Carlo to estimate the SMM boundary correction factor
β. Our T̂ estimator for T defined in Eq. (3.107) is a volume tally. Our estimator for β will
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be a boundary surface tally. We defined β in Eq. (1.45). We can rewrite Eq. (1.45) using
the definitions in Eqs. (1.17) and (1.25) as,

β = B − 1

2
ϕs , (3.108)

where the subscript s on ϕ in Eq. (3.108) denotes that the domain of definition is a surface
rather than a volume. Eq. (3.87) defines ϕ̂s, which is the estimator for ϕs that we derived
in section 3.3.3. If we multiply the characteristic Eq. (3.49) by |Ω · n|, integrate over all
directions, then average over an arbitrary boundary face F ∈ Γb, we will obtain Eq. (3.83)
precisely, but with an additional factor of |Ω · n| in the integrands. Proceeding with the
derivation will result in Eq. (3.87) for ϕ̂s, but with an additional factor of |Ω ·n|, which will
cancel the one in the denominator of Eq. (3.87). The result is,

B̂ =
2

area(F)
∑

i

wi , (3.109)

where the sum in Eq. (3.109) is over all particles which cross the face F ∈ Γb. The sum
includes both volume source particles and boundary source particles. Thus, we can estimate
the boundary correction factor β as,

β̂ = B̂ − 1

2
ϕ̂s . (3.110)

3.5 The Central Limit Theorem and Transport

Estimators

This section addresses the question of whether it is appropriate to apply the CLT to the
Monte Carlo transport estimators derived in the previous sections. First, recall section 3.1.3
Probability Distribution Moment Estimation, where we defined the sample mean X̄, which is
an estimator of µ. In section 3.1.4 Central Limit Theorem, we showed that the uncertainty
of the estimator X̄ is

√
Var[·]/N , where Var[·] is the variance of the estimator and N is

the number of random variables Xi, i ∈ {1, . . . , N} in Eq. (3.20). This expression for
the uncertainty, which comes from the CLT, requires that the Xi are iid with finite mean
and finite variance. Are the random variables which appear in the Monte Carlo transport
estimators also iid with finite mean and finite variance?

In section 3.3 Monte Carlo Integration of Linear Transport, we defined the estimators ϕ̂
and ϕ̂s. In section 3.4 Monte Carlo Integration of Second Moment Method, we defined the
estimators P̂ and B̂ and used them with ϕ̂ and ϕ̂s to define estimators T̂ = P̂ − (1/3)Iϕ̂
and β̂ = B̂ − (1/2)ϕ̂s for the SMM data. All of these estimators are sums corresponding to
Monte Carlo integration of the expectation of p(r′,Ω, s) and ρ(r′,Ω, s), which are defined
in Eqs. (3.63) and (3.73), respectively. The function p(r′,Ω, s) is a function of the random
variables,

R ∼ U(D) , (3.111a)
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ω ∼ U(S2) , (3.111b)

S ∼ exponential(σt(R+ sω)) . (3.111c)

The function ρ(r′,Ω, s) is a function of the random variables,

Rb ∼ U(∂D) , (3.112a)

ωh ∼ U(S2
h) , (3.112b)

Sb ∼ exponential(σt(Rb + sωh)) . (3.112c)

The sums in the estimators are sums over:

• N iid random variables Ri for i ∈ {1, . . . , N}, and

• N iid random variables ωi for i ∈ {1, . . . , N}, and

• N iid random variables Si for i ∈ {1, . . . , N}, and

• M iid random variables Rj
b for j ∈ {1, . . . ,M}, and

• M iid random variables ωj
h for j ∈ {1, . . . ,M}, and

• M iid random variables Sj
b for j ∈ {1, . . . ,M}, because

we use N particles to integrate the volume source and we use M particles to integrate the
boundary source. Note that the Si are independent of each other, even though Si depends
on Ri and ωi. The same is true of the Si

b, which depend on Ri
b and ωi

h.
Since the random variables are iid, the only remaining constraint they must satisfy for

the CLT to apply to the estimators is that the mean and variance of the random variables
must be finite. As shown in Eqs. (3.111a) to (3.111c) and Eqs. (3.112a) to (3.112c), the two
distributions which characterize the random variables are the uniform distribution and the
exponential distribution. We will consider these distributions separately.

First, consider the uniform random variable X ∼ U(a, b). The mean is 0.5(a+ b) and the
variance is (1/12)(a + b)2, which indicates that the mean and the variance of the uniform
distribution are finite as long as the parameters a and b are also finite. The parameters in
Eqs. (3.111a), (3.111b), (3.112a) and (3.112b) are D, S2, ∂D, and S2

h, respectively. The unit
sphere and its hemisphere are clearly finite. That leaves D and ∂D, which are finite if the
problem definition specifies a finite domain and a finite domain boundary.

Now consider the exponential random variable X ∼ exponential(λ(x)), where λ(x) is the
non-constant rate parameter. Its PDF is Eq. (3.13) and its mean is Eq. (3.19). Its variance
is E[f 2]− (E[f ])2, where f is the PDF of X defined by Eq. (3.13). The mean and variance
of X are finite if the domain of f is finite and the rate parameter λ(x) is finite. The former
is true if D is finite. The latter is true for radiative transfer because the rate parameter is
the total cross section σt which we can assume is finite because the physical quantities on
which it depends are all finite.
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Thus, we conclude that the random variables have finite mean and finite variance as long
as the domain D and its boundary ∂D are finite.

In summary, the random variables associated with the Monte Carlo transport estimators
are iid. Additionally, they have finite mean and finite variance, as long as the domain
D pertaining to the particular problem under study and its boundary ∂D are both finite.
Therefore, the requirement that must be satisfied for the CLT to apply to the estimators is:

vol(D) <∞ , (3.113a)

and
area(∂D) <∞ . (3.113b)

Consider, for example, a linear transport problem on the unit square, D = [0, 1]2. This
domain and its boundary satisfy Eqs. (3.113a) and (3.113b). Consider using the Monte Carlo
transport method with N particles to solve this linear transport problem. By the CLT, the
uncertainty of the Monte Carlo estimator for the solution would be

√
Var[·]/N , where Var[·]

is the variance of the estimator and N is the number of MC particles.
Many transport problems on infinite domains can be accurately approximated as trans-

port problems on finite domains using an appropriate boundary condition. Some infinite-
domain problems, such as the ones that follow, can be modeled exactly on a finite do-
main. Consider an “infinite medium” problem, which has infinite domain, thus violating
Eqs. (3.113a) and (3.113b). Assume that the matter is homogeneous and that the fixed
source does not have spatial dependence. The problem can be modeled exactly on a cube of
finite extent with “reflecting” boundary conditions. Any MC particle which hits the domain
boundary (i.e. a face of the cube) has its direction Ω negated with respect to the boundary
surface normal vector n (i.e. ex, ey, ez,−ex,−ey, or −ez for an axis-aligned cube).

A “semi-infinite medium” is infinite in extent along one or two spatial axes, but not
all three. It also violates Eqs. (3.113a) and (3.113b). However, it can be modeled in the
same manner as the infinite medium, except with reflecting boundaries placed only along
the axis or axes corresponding to the infinite extent(s), again assuming homogeneity of
the matter. The transformed infinite medium, and the transformed semi-infinite medium,
are exact models of the original problems, but the transformed problems no longer violate
Eqs. (3.113a) and (3.113b).

3.6 Derivation of Var[T̂] in the Thick Diffusion Limit

In section 3.5 The Central Limit Theorem and Transport Estimators, we showed that the
uncertainty of a Monte Carlo transport estimator is

√
Var[·]/N , where Var[·] is the variance

of the estimator and N is the number of MC particles. This result follows from the CLT,
which applies provided that Eqs. (3.113a) and (3.113b) is satisfied. In section 5.2 Thick
Diffusion Limit Problem, I will show that Var[ϕ̂] = O(1/ϵ) in the thick diffusion limit, which
is an analytic result for which I provide supporting empirical evidence in Fig. 5.8.
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The O(1/ϵ) dependence of the variance is undesirable because it means that, for a fixed
number of MC particles, the quality of the HSM estimate of the solution to the linear
transport Eq. (1.13a) decreases with optical thickness because the uncertainty increases
with optical thickness. In this section, I derive Var[ϕ̂] to show that it is O(1/ϵ) in the TDL
for HSM calculations using T̂. My purpose is to motivate section 3.7, in which I derive a
lower variance estimator for T, which I call R̂. In section 3.7.3, I derive Var[R̂] to show that
Var[R̂]≪ Var[T̂] in the TDL.

My derivation of Var[T̂] begins by deriving Var[ϕ̂]. In section 3.3.2 Derivation of ϕ̂ Esti-
mator, we showed that ϕ̂ is the sum of the contributions from two estimators for expectations
of functions of random variables, Eqs. (3.65) and (3.75). We can derive the variance of ϕ̂
by deriving the variance of these functions. Functionals of random variables, such as the
expectation, can be applied to functions of random variables because a function of one or
more random variables is itself a random variable.

The variance of a random variable, or a function of random variables, is the expectation
of the square minus the square of the expectation,

Var[f ] = E[f 2]− (E[f ])2 . (3.114)

Recalling Eq. (3.66), which shows the expectation of f along with a volume factor, the
expectation of f 2 is,

E[f 2] =

∫

D

∫

S2

∫ ∞

0

f 2p ds dΩdr′ , (3.115)

where p and f are defined by Eqs. (3.63) and (3.65), respectively. Momentarily disregard
the volume and angle integrals and consider only the integral along the particle path,

∫ ∞

0

f 2p ds =

∫ ∞

0

(
4π vol(D)Qτ

)2( 1

vol(D)
1

4π
pσt

)
ds

= 4π vol(D)Q2

∫ ∞

0

τ 2pσt ds , (3.116)

where pσt and τ are defined by Eqs. (3.55) and (3.56a), respectively. In a single material
problem, the rate in the exponential PDF is constant, and Eq. (3.55) simplifies to,

pσt(s) = σte
−σts . (3.117)

Eq. (3.117) in the TDL is,

pσt(s) =
σt
ϵ
e−

σt
ϵ
s , (3.118)

where ϵ is the TDL scaling parameter described in section 1.3.6. Now consider just the
integral in Eq. (3.116) without its coefficient. Substituting Eq. (3.118) for pσt and Eq. (3.56a)
for τ into the integral gives,

∫ ∞

0

τ 2pσt ds =

∫ ∞

0

τ 2
(σt
ϵ
e−

σt
ϵ
s
)
ds

=

∫ s2

s1

(s− s1)2
σt
ϵ
e−

σt
ϵ
s ds+ (s2 − s1)2

∫ ∞

s2

σt
ϵ
e−

σt
ϵ
s ds . (3.119)
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The second integral in Eq. (3.119) is,

(s2 − s1)2
∫ ∞

s2

σt
ϵ
e−

σt
ϵ
s ds = (s2 − s1)2

[
−e−σt

ϵ
s
]∞
s2

= (s2 − s1)2e−
σt
ϵ
s2 . (3.120)

The first integral in Eq. (3.119) may be computed using integration by parts twice. Applying
integration by parts once gives,

∫ s2

s1

(s− s1)2
σt
ϵ
e−

σt
ϵ
s ds =

[
−(s− s1)2e−

σt
ϵ
s
]s2
s1
+

∫ s2

s1

2(s− s1)
σt
ϵ
e−

σt
ϵ
s ds

= −(s2 − s1)2e−
σt
ϵ
s2 +

∫ s2

s1

2(s− s1)
σt
ϵ
e−

σt
ϵ
s ds . (3.121)

Applying integration by parts to the integral in Eq. (3.121) gives,
∫ s2

s1

2(s− s1)
σt
ϵ
e−

σt
ϵ
s ds =

[
2(s− s1)

−ϵ
σt
e−

σt
ϵ
s

]s2

s1

−
∫ s2

s1

2
−ϵ
σt
e−

σt
ϵ
s ds

= 2(s1 − s2)
ϵ

σt
e−

σt
ϵ
s2 + 2

ϵ

σt

[
− ϵ

σt
e−

σt
ϵ
s

]s2

s1

= 2(s1 − s2)
ϵ

σt
e−

σt
ϵ
s2 + 2

ϵ

σt

(
ϵ

σt
e−

σt
ϵ
s1 − ϵ

σt
e−

σt
ϵ
s2

)

= 2

(
ϵ

σt

)2

e−
σt
ϵ
s1 +

{
2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ
s2 .

(3.122)

The first integral in Eq. (3.119) is thus,

∫ s2

s1

(s− s1)2
σt
ϵ
e−

σt
ϵ
s ds = 2

(
ϵ

σt

)2

e−
σt
ϵ
s1

+

{
−(s2 − s1)2 + 2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ
s2 . (3.123)

We can now write Eq. (3.119) as the sum of Eqs. (3.120) and (3.123),

∫ ∞

0

τ 2pσt ds = 2

(
ϵ

σt

)2

e−
σt
ϵ
s1 +

{
2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ
s2 . (3.124)

Define a new random variable ζ
(1)
K equal to Eq. (3.124),

ζ
(1)
K = 2

(
ϵ

σt

)2

e−
σt
ϵ
s1 +

{
2s1

(
ϵ

σt

)
− 2s2

(
ϵ

σt

)
− 2

(
ϵ

σt

)2
}
e−

σt
ϵ
s2 . (3.125)
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We can label the terms and coefficients in Eq. (3.125) to show the order of each term and
coefficient in the TDL. Recall that in the TDL, ϵp < ϵq for p > q, because ϵ ∈ (0, 1]. The
terms in Eq. (3.125) scale as,

2

(
ϵ

σt

)2

︸ ︷︷ ︸
O(ϵ2)

e−
σt
ϵ
s1︸ ︷︷ ︸

O(1)

︸ ︷︷ ︸
O(ϵ2)

+


2s1

(
ϵ

σt

)

︸ ︷︷ ︸
O(ϵ)

− 2s2

(
ϵ

σt

)

︸ ︷︷ ︸
O(ϵ)

− 2

(
ϵ

σt

)2

︸ ︷︷ ︸
O(ϵ2)


 e−

σt
ϵ
s2︸ ︷︷ ︸

O(1)

︸ ︷︷ ︸
O(ϵ)

, (3.126)

where the exponentials are bounded by 1 because e−x ∈ (0, 1] for x ≥ 0. Thus, ζ
(1)
K is O(ϵ).

The same labeling procedure can be applied to Q, which can be written as,

Q = (σt − σa)
φ

4π
+ q . (3.127)

Eq. (3.127) in the TDL is,

Q =
(σt
ϵ
− ϵσa

) φ

4π
+ ϵq

=
σt
ϵ

(
1− ϵ2σa

σt

φ

4π
+ ϵ2

q

σt

)
. (3.128)

The terms in Eq. (3.128) scale as,

σt
ϵ︸︷︷︸

O(ϵ−1)


 1︸︷︷︸

O(1)

− ϵ2σa
σt

φ

4π︸ ︷︷ ︸
O(ϵ2)

+ ϵ2
q

σt︸︷︷︸
O(ϵ2)




︸ ︷︷ ︸
O(ϵ−1)

. (3.129)

Thus, Q is O(ϵ−1).
Finally, we can rewrite Eq. (3.115) using Eq. (3.116) with Eq. (3.125) substituted,

E[f 2] =

∫

D

∫

S2

(∫ ∞

0

f 2p ds

)
dΩdr′

=

∫

D

∫

S2

(
4π vol(D)Q2

∫ ∞

0

τ 2pσt ds

)
dΩdr′

= 4π vol(D)
∫

D

∫

S2
Q2 ζ

(1)
K dΩdr′ . (3.130)
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We can label the terms in Eq. (3.130) using the orders of ζ
(1)
K andQ determined in Eqs. (3.126)

and (3.129), respectively, as follows,

4π vol(D)︸ ︷︷ ︸
O(1)

∫

D

∫

S2
Q2

︸︷︷︸
O(ϵ−2)

ζ
(1)
K︸︷︷︸

O(ϵ)

dΩdr′

︸ ︷︷ ︸
O(ϵ−1)︸ ︷︷ ︸

O(ϵ−1)

. (3.131)

Thus, E[f 2] is O(ϵ−1).
As shown by Eq. (3.114), the variance is the difference of two expectations, of which

Eq. (3.130) is only the first. The second is (E[f ])2, for which we must consider E[f ],

E[f ] =

∫

D

∫

S2

∫ ∞

0

fp ds dΩdr′ . (3.132)

The integral along the particle path is,
∫ ∞

0

fp ds =

∫ ∞

0

(
4π vol(D)Qτ

)( 1

vol(D)
1

4π
pσt

)
ds

= Q

∫ ∞

0

τpσt ds . (3.133)

Substituting Eq. (3.118) for pσt and Eq. (3.56a) for τ into the integral gives,
∫ ∞

0

τpσt ds =

∫ ∞

0

τ
(σt
ϵ
e−

σt
ϵ
s
)
ds

=

∫ s2

s1

(s− s1)
σt
ϵ
e−

σt
ϵ
s ds+ (s2 − s1)

∫ ∞

s2

σt
ϵ
e−

σt
ϵ
s ds . (3.134)

The second integral in Eq. (3.134) is,

(s2 − s1)
∫ ∞

s2

σt
ϵ
e−

σt
ϵ
s ds = (s2 − s1)

[
−e−σt

ϵ
s
]∞
s2

= (s2 − s1)e−
σt
ϵ
s2 . (3.135)

The first integral in Eq. (3.134) may be computed using integration by parts,
∫ s2

s1

(s− s1)
σt
ϵ
e−

σt
ϵ
s ds =

[
−(s− s1)e−

σt
ϵ
s
]s2
s1
+

∫ s2

s1

e−
σt
ϵ
s ds

= (s1 − s2)e−
σt
ϵ
s2 +

[−ϵ
σt
e−

σt
ϵ
s

]s2

s1

= (s1 − s2)e−
σt
ϵ
s2 − ϵ

σt
e−

σt
ϵ
s2 +

ϵ

σt
e−

σt
ϵ
s1

=

(
s1 − s2 −

ϵ

σt

)
e−

σt
ϵ
s2 +

ϵ

σt
e−

σt
ϵ
s1 . (3.136)
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We can now rewrite Eq. (3.134) as the sum of Eqs. (3.135) and (3.136),

∫ ∞

0

τpσt ds =
ϵ

σt

(
e−

σt
ϵ
s1 − e−σt

ϵ
s2
)
. (3.137)

Define a new random variable ζ
(0)
K equal to Eq. (3.137),

ζ
(0)
K =

ϵ

σt

(
e−

σt
ϵ
s1 − e−σt

ϵ
s2
)
. (3.138)

We can label the terms and coefficients in Eq. (3.138) to show the order of each term and
coefficient. The terms in Eq. (3.138) scale as,

ϵ

σt︸︷︷︸
O(ϵ)


e−σt

ϵ
s1︸ ︷︷ ︸

O(1)

− e−σt
ϵ
s2︸ ︷︷ ︸

O(1)




︸ ︷︷ ︸
O(ϵ)

. (3.139)

Thus, ζ
(0)
K is O(ϵ). Finally, we can rewrite Eq. (3.132) using Eq. (3.133) with Eq. (3.138)

substituted,

E[f ] =

∫

D

∫

S2

(∫ ∞

0

fp ds

)
dΩdr′

=

∫

D

∫

S2

(
Q

∫ ∞

0

τpσt ds

)
dΩdr′

=

∫

D

∫

S2
Qζ

(0)
K dΩdr′ . (3.140)

We can label the terms in Eq. (3.140) using the orders of ζ
(0)
K andQ determined in Eqs. (3.129)

and (3.139), respectively, as follows,

∫

D

∫

S2
Q︸︷︷︸

O(ϵ−1)

ζ
(0)
K︸︷︷︸

O(ϵ)

dΩdr′

︸ ︷︷ ︸
O(1)

. (3.141)

Thus, E[f ] is O(1). We can now label the terms in the variance Eq. (3.114), which scales as,

Var[f ] = E[f 2]︸ ︷︷ ︸
O(ϵ−1)

− (E[f ])2︸ ︷︷ ︸
O(1)︸ ︷︷ ︸

O(ϵ−1)

. (3.142)
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Thus, the estimator ϕ̂ has variance O(1/ϵ) in the TDL. That is, Var[ϕ̂] is O(1/ϵ). We can
use this result along with Eq. (3.107) to determine Var[T̂] in the TDL,

Var[T̂] = Var

[
P̂− 1

3
Iϕ̂

]

= Var[P̂] + Var

[
1

3
Iϕ̂

]
− 2Cov

[
P̂,

1

3
Iϕ̂

]

= Var[P̂] +
1

9
IVar[ϕ̂]− 2Cov

[
P̂,

1

3
Iϕ̂

]
, (3.143)

where Cov[·, ·] is the covariance of two random variables. I argue that Var[T̂] is O(1/ϵ) in
the TDL by arguing that the orders of the three terms in Eq. (3.143) are all O(1/ϵ):

1. The first term in Eq. (3.143), Var[P̂], is O(1/ϵ) just like Var[ϕ̂]. In section 3.4.2,
I described how ϕ̂ and T̂ are nearly the same volume estimator, in the sense that
the latter is just the former multiplied by Ω ⊗ Ω. The quantity Ω ⊗ Ω is O(1), and
multiplication of an O(1/ϵ) quantity by an order unity quantity leaves the order O(1/ϵ)
quantity unchanged.

2. The second term in Eq. (3.143), 1
9
IVar[ϕ̂], is O(1/ϵ). This is because the constant

tensor 1
9
I is O(1), Var[ϕ̂] is O(1/ϵ), and the product of the two is O(1/ϵ).

3. The third term in Eq. (3.143), 2Cov
[
P̂, 1

3
Iϕ̂
]
, is O(1/ϵ). The covariance of two random

variables X and Y is Cov[X, Y ] = E[XY ]−E[X]E[Y ]. The estimators P̂ and 1
3
Iϕ̂ have

asymptotic orders which are equivalent to the order of the function of random variables

f defined in Eq. (3.65). Thus, we may express 2Cov
[
P̂, 1

3
Iϕ̂
]
as E[ff ]− E[f ]E[f ] =

E[f 2]− (E[f ])2. This is just the definition of Var[f ], which we found to be O(1/ϵ).

Thus, Var[T̂] is O(1/ϵ).

3.7 A Lower Variance Estimator for T

In section 3.6 Derivation of Var[T̂] in the Thick Diffusion Limit, we showed that Var[T̂] =
O(1/ϵ). This is undesirable because of the way that Var[T̂] appears in the expression for the
difference of the estimator and the quantity that we are estimating. Specifically,

|T̂−T| ∼
(
Var[T̂]

)1/2
N−1/2 , (3.144)
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where N is the number of HSM particles. Setting the right-hand side of Eq. (3.144) to unity,
substituting 1/ϵ for Var[T̂], and then manipulating the result gives us,

(
Var[T̂]

)1/2
N−1/2 = 1

ϵ−1/2N−1/2 = 1

ϵ−1/2 = N1/2

ϵ−1 = N . (3.145)

Thus, we need N = O(1/ϵ) HSM particles to maintain a fixed solution quality in the TDL.
This means that we need more HSM particles in optically-thick media to maintain a fixed
solution quality, and that attempting to maintain a fixed solution quality will cause the
HSM method to use significantly more memory and computational time for an acceptably
accurate solution in the optically-thick limit ϵ→ 0.

3.7.1 Derivation of R̂ Estimator

In this section, we derive a new estimator for T that we call R̂. The advantage of R̂ is that
Var[R̂] is O(ϵ) in the TDL. Recomputing Eqs. (3.144) and (3.145) using Var[R̂] = ϵ instead
of Var[T̂] = 1/ϵ, we observe that we can maintain a fixed solution quality in the TDL using a
number of HSM particles that is equal to the optical thickness parameter, N = O(ϵ), as long
as we compute R̂ instead of T̂. The derivation of R̂ uses integration by parts to introduce a
factor of σ−1

t into the scattering source. This reduces the magnitude of the scattering source
from O(1/ϵ) to O(ϵ) in the TDL, while also generating additional source terms that must be
computed.

We begin our derivation of R̂ by defining Q(x,Ω) to be the right-hand side of Eq. (1.13a),

Q(x,Ω) =
σs
4π
φ(x) + q(x,Ω) . (3.146)

The steady-state, gray, linear transport Eqs. (1.13a) and (1.13b), rewritten using Eq. (3.146),
are:

Ω · ∇ψ(x,Ω) + σtψ(x,Ω) = Q(x,Ω) x ∈ D , (3.147a)

ψ(x,Ω) = ψinc(x,Ω) , x ∈ ∂D and Ω · n < 0 . (3.147b)

For simplicity of presentation, consider a homogeneous medium, which is defined by a con-
stant opacity8. The characteristic equation defining the solution to Eqs. (3.147a) and (3.147b)
is,

ψ(r,Ω) = e−σts0ψinc +

∫ s0

0

e−σtsQ ds , (3.148)

8In the general case of a heterogeneous medium, not only is the derivation of R̂ more complicated, but
the R̂ that results will include sources defined on the material interfaces.
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where s0(r,Ω) = min{s | r − sΩ ∈ ∂D} denotes the minimum distance from r to the
boundary ∂D when traveling in the direction −Ω as shown in Fig. 3.1. For ψinc = 0,
Eq. (3.148) is,

ψ(r,Ω) =

∫ s0

0

e−σtsQ ds . (3.149)

Consider the following manipulation of the right-hand side of Eq. (3.149) which gives a
derivative in the integrand,

∫ s0

0

e−σtsQ ds = − 1

σt

∫ s0

0

d

ds
(e−σts)Q ds , (3.150)

and the product rule that we will use to replace the derivative in the integrand of Eq. (3.150),

d

ds
(e−σtsQ) =

d

ds
(e−σts)Q+ e−σts

dQ

ds
. (3.151)

Substitute dQ
ds

= −Ω · ∇Q into Eq. (3.151) and re-arrange,

d

ds
(e−σts)Q =

d

ds
(e−σtsQ) + e−σtsΩ · ∇Q . (3.152)

Use Eq. (3.152) in the right-hand side of Eq. (3.150),

− 1

σt

∫ s0

0

d

ds
(e−σts)Q ds = − 1

σt

∫ s0

0

d

ds
(e−σtsQ) ds− 1

σt

∫ s0

0

e−σtsΩ · ∇Q ds

= − 1

σt
(e−σts0Q(s0)−Q(0))−

1

σt

∫ s0

0

e−σtsΩ · ∇Q ds

=
1

σt
Q− 1

σt
e−σts0Q(s0)−

1

σt

∫ s0

0

e−σtsΩ · ∇Q ds . (3.153)

Thus,

ψ(r,Ω) =
1

σt
Q− 1

σt
e−σts0Q(s0)−

1

σt

∫ s0

0

e−σtsΩ · ∇Q ds . (3.154)

Using σs = σt − σa, we may rewrite Eq. (3.146) as,

Q =
σt − σa
4π

φ+ q . (3.155)

Multiplying Eq. (3.155) by σ−1
t gives,

1

σt
Q =

(
1− σa

σt

)
φ

4π
+

1

σt
q . (3.156)

Subtracting φ/4π from Eq. (3.156) gives,

1

σt
Q− φ

4π
= −σa

σt

φ

4π
+

1

σt
q , (3.157)
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which we will use shortly. Subtracting φ/4π from Eq. (3.154) gives,

ψ(r,Ω)− φ

4π
=

(
1

σt
Q− φ

4π

)
− 1

σt
e−σts0Q(s0)−

1

σt

∫ s0

0

e−σtsΩ · ∇Q ds . (3.158)

Substituting the right-hand side of Eq. (3.157) for the term in the big parentheses on the
right-hand side of Eq. (3.158) gives,

ψ(r,Ω)− φ

4π
= −σa

σt

φ

4π
+

1

σt
q − 1

σt
e−σts0Q(s0)−

1

σt

∫ s0

0

e−σtsΩ · ∇Q ds . (3.159)

Now consider the new linear transport problem,

Ω · ∇ψ(1) + σtψ
(1) = − 1

σt
Ω · ∇Q (3.160a)

ψ(1) = − 1

σt
Q(s0) , s0 ∈ ∂D and Ω · n < 0 . (3.160b)

The characteristic equation defining the solution to Eqs. (3.160a) and (3.160b) is,

ψ(1) = − 1

σt
e−σts0Q(s0)−

1

σt

∫ s0

0

e−σtsΩ · ∇Q ds , (3.161)

which lets us rewrite Eq. (3.159) as,

ψ(r,Ω)− φ

4π
= −σa

σt

φ

4π
+

1

σt
q + ψ(1) . (3.162)

The average of the SMM correction tensor T over an element K is,

RK,i,j =
1

vol(K)

∫

K

∫

S2
ΩiΩj

(
ψ − φ

4π

)
dΩdx . (3.163)

Substituting the right-hand side of Eq. (3.162) into Eq. (3.163) gives,

RK,i,j =
1

vol(K)

∫

K

∫

S2
ΩiΩjψ

(1) dΩdx

− σa
σt

1

vol(K)

∫

K

∫

S2
ΩiΩj

φ

4π
dΩdx

+
1

σt

1

vol(K)

∫

K

∫

S2
ΩiΩjq dΩdx . (3.164)

We can use the path length estimators mentioned earlier in this chapter to approximate the
first term in Eq. (3.164),

R
(1)
K,i,j =

1

vol(K)

∫

K

∫

S2
ΩiΩjψ

(1) dΩdx , (3.165)
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which is just linear transport with source −σ−1
t Ω · ∇Q and inflow −σ−1

t Q. The second term
in Eq. (3.164) is an integral of the moment system solution φ over the element K,

R
(2)
K,i,j = −

σa
σt

1

vol(K)

∫

K

∫

S2
ΩiΩj

φ

4π
dΩdx

= −σa
σt

1

vol(K)

δij
3

∫

K

φ dx . (3.166)

The third term in Eq. (3.164) is an integral of the fixed source q over the element K,

R
(3)
K,i,j =

1

σt

1

vol(K)

∫

K

∫

S2
ΩiΩjq dΩdx

=
1

σt

1

vol(K)

4π

3
δij

∫

K

q dΩdx . (3.167)

Thus, we can use Eqs. (3.165) to (3.167) to write Eq. (3.164) as,

RK,i,j = R
(1)
K,i,j +R

(2)
K,i,j +R

(3)
K,i,j . (3.168)

where the first two terms vary with each iteration and the third term is fixed.

3.7.2 Implementation Details of R̂ Estimator

To compute R̂, we need to

1. compute P̂
(1)

for Q(1) = − 1
σt
Ω · ∇Q and ψ

(1)
inc = − 1

σt
Q,

2. integrate φ on every element K, and

3. integrate q on every element K.

The integration can be done using a suitable quadrature rule. Computing P̂
(1)

can be done
using the Monte Carlo transport technique mentioned earlier in this chapter. Implementing
the technique requires identifying the sources, which can be partitioned into volume sources
and boundary sources as follows:

Volume Sources

Distributing the gradient and the dot product in Q(1) gives,

Q(1) = − 1

σt
Ω · ∇Q

= − 1

σt
Ω · ∇

( σs
4π
φ+ q

)

= − 1

σt
Ω ·
( σs
4π
∇φ+∇q

)

= −σs
σt

1

4π
Ω · ∇φ− 1

σt
Ω · ∇q . (3.169)



96

Thus, − 1
σt
Ω · ∇q is the fixed volume source and −σs

σt

1
4π
Ω · ∇φ is the variable volume source.

Boundary Sources

Expanding Q in ψ
(1)
inc gives,

ψ
(1)
inc = −

1

σt
Q

= − 1

σt

( σs
4π
φ+ q

)

= −σs
σt

1

4π
φ− 1

σt
q . (3.170)

Thus, − 1
σt
q is the fixed boundary source and −σs

σt

1
4π
φ is the variable boundary source.

Summary of Sources

Table 3.1 and table 3.2 summarize the sources for the transformed and original problems,
respectively. The rightmost two columns give the order of the sources in the corresponding
table locations to the left of the vertical line. The orders are determined by substituting the
TDL scaling Eqs. (1.48a) to (1.48d). Let k be the exponent on ϵ in the order expression,
so O(ϵk). Notice that k ≥ 0 for all sources in the transformed problem, meaning that the
transformed problem source magnitudes do not grow as ϵ → 0. They either shrink or stay
constant. This contrasts with the original problem, for which k ≥ 0 is not true, because of
the scattering source. Observe that (σs/(4π))φ is O(1/ϵ) in the TDL, meaning that it grows
without bound as ϵ→ 0. The integration by parts in the derivation of R̂ introduced a factor
of σ−1

t into the scattering source. This reduced the magnitude of the scattering source from
O(1/ϵ) to O(1) in the TDL, while also generating other source terms that must be computed.

Fixed Variable

Volume − 1

σt
Ω · ∇q −σs

σt

1

4π
Ω · ∇φ O(ϵ2) O(1)

Boundary − 1

σt
q −σs

σt

1

4π
φ O(ϵ2) O(1)

Table 3.1: Source values and TDL orders for the transformed problem.

3.7.3 Derivation of Var[R̂] in the Thick Diffusion Limit

Here we explain why R̂ may be a superior estimator for T, which is that Var[R̂]≪ Var[T̂] in
the TDL. The derivation of Var[R̂] resembles our derivation of Var[T̂] in section 3.6, but the
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Fixed Variable

Volume q
σs
4π
φ O(ϵ) O(1/ϵ)

Boundary 0 0 N/A N/A

Table 3.2: Source values and TDL orders for the original problem.

result will be different, because Var[T̂] is O(1/ϵ), whereas we will see that Var[R̂] is O(ϵ).
A quantity that is O(ϵ) is smaller than a quantity which is O(1/ϵ) because ϵ ∈ (0, 1]. In the
TDL, ϵ→ 0, so a O(ϵ) quantity also goes to 0 whereas a O(1/ϵ) quantity goes to infinity.

The linear transport problem in the R̂ estimator computation is slightly different than
in the T̂ estimator computation. Both require transporting domain boundary and volume
sources, but the magnitude of these sources in the R̂ estimator problem is attenuated by a
factor of 1/σt, which is ϵ/σt in the TDL. Table 3.3 shows these sources.

Boundary Source Volume Source Function of Random Variables

T̂ ψinc Q f = 4π vol(D)Qτ
R̂ ψ

(1)
inc =

−1
σt
Q Q(1) = −1

σt
Ω · ∇Q h = 4π vol(D)Q(1)τ

Table 3.3: Sources and random variable functions for the linear transport problems associated
with the original estimator, T̂, and the improved estimator, R̂.

Recall from Eq. (3.129) that Q is O(1/ϵ) in the TDL. We can use this result to label
the terms and coefficients in the R̂ volume source Q(1) to show the order of each term and
coefficient. In the TDL, the R̂ volume source Q(1) is,

Q(1) =
−ϵ
σt

Ω · ∇Q , (3.171)

and the terms in Eq. (3.171) scale as,

−ϵ
σt︸︷︷︸
O(ϵ)

Ω︸︷︷︸
O(1)

· ∇Q︸︷︷︸
O(ϵ−1)

︸ ︷︷ ︸
O(1)

. (3.172)

Thus, Q(1) is O(1). Following section 3.6, we compute the expectation of the square first, then
the square of the expectation. Consider the function h = 4π vol(D)Q(1)τ . The expectation
of h2 is,

E[h2] =

∫

D

∫

S2

∫ ∞

0

h2p ds dΩdr′ . (3.173)
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The integral along the particle path is,
∫ ∞

0

h2p ds =

∫ ∞

0

(
4π vol(D)Q(1) τ

)2( 1

vol(D)
1

4π
pσt

)
ds

= 4π vol(D)
(
Q(1)

)2 ∫ ∞

0

τ 2pσt ds . (3.174)

We can rewrite Eq. (3.173) using Eq. (3.174) with Eq. (3.125) substituted,

E[h2] =

∫

D

∫

S2

(∫ ∞

0

h2p ds

)
dΩdr′

=

∫

D

∫

S2

(
4π vol(D)

(
Q(1)

)2 ∫ ∞

0

τ 2pσt ds

)
dΩdr′

= 4π vol(D)
∫

D

∫

S2

(
Q(1)

)2
ζ
(1)
K dΩdr′ . (3.175)

We can label the terms in Eq. (3.175) using the orders of ζ
(1)
K and Q(1) determined in

Eqs. (3.126) and (3.172), respectively, as follows,

4π vol(D)︸ ︷︷ ︸
O(1)

∫

D

∫

S2

(
Q(1)

)2
︸ ︷︷ ︸

O(1)

ζ
(1)
K︸︷︷︸

O(ϵ)

dΩdr′

︸ ︷︷ ︸
O(ϵ)︸ ︷︷ ︸

O(ϵ)

. (3.176)

Thus, E[h2] is O(ϵ). The expectation of h is,

E[h] =

∫

D

∫

S2

∫ ∞

0

hp ds dΩdr′ . (3.177)

The integral along the particle path is,
∫ ∞

0

hp ds =

∫ ∞

0

(
4π vol(D)Q(1) τ

)( 1

vol(D)
1

4π
pσt

)
ds

= Q(1)

∫ ∞

0

τpσt ds . (3.178)

We can rewrite Eq. (3.177) using Eq. (3.178) with Eq. (3.138) substituted,

E[h] =

∫

D

∫

S2

(∫ ∞

0

hp ds

)
dΩdr′

=

∫

D

∫

S2

(
Q(1)

∫ ∞

0

τpσt ds

)
dΩdr′

=

∫

D

∫

S2
Q(1) ζ

(0)
K dΩdr′ . (3.179)
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We can label Eq. (3.179) using the orders of ζ
(0)
K and Q(1) determined in Eqs. (3.139)

and (3.172), respectively, as follows,

∫

D

∫

S2
Q(1)

︸︷︷︸
O(1)

ζ
(0)
K︸︷︷︸

O(ϵ)

dΩdr′

︸ ︷︷ ︸
O(ϵ)

. (3.180)

Thus, E[h] is O(ϵ). We can now label the variance as,

Var[h] = E[h2]︸ ︷︷ ︸
O(ϵ)

− (E[h])2︸ ︷︷ ︸
O(ϵ2)︸ ︷︷ ︸

O(ϵ)

. (3.181)

Thus, the estimator ϕ̂ for the R̂ transport problem has variance O(ϵ) in the TDL. It follows

that the estimator P̂
(1)

for R
(1)
K,i,j defined by Eq. (3.165) has variance O(ϵ) as well.

Finally, we consider the two additional terms R
(2)
K,i,j and R

(3)
K,i,j defined by Eqs. (3.166)

and (3.167), respectively. As described in section 3.7.2, we do not solve a transport prob-
lem to compute them, but rather compute deterministic integrals. In that sense, they are
constants, and Var[c] = 0 for any constant c, so they do not contribute to Var[R̂]. Thus,
Var[R̂] is O(ϵ). This is the reason to prefer R̂ over T̂ for estimating T. The former has
variance which decreases with optical thickness and the latter has variance which increases
with optical thickness. My HSM implementation for this dissertation, which I describe in
Chapter 4 and section 4.4, uses T̂. Future implementations may consider using R̂ instead.

3.8 Deviatoric Estimator for T

In section 3.7, we derived an estimator for T which we called R̂. While R̂ accomplishes the
goal of dramatically reducing the estimator variance in the TDL, R̂ requires more sources.
In a homogeneous medium with no inflow, estimating T by computing the T̂ estimator
defined in section 3.4.2 requires only two sources (see table 3.2). Computing R̂ to estimate
T requires twice as many sources, and the four required sources depend not only on q and
φ, but also on their derivatives (see table 3.1). Finally, in a heterogeneous medium, the use
of integration by parts to derive R̂ produces surface sources on material interfaces. This is
because the opacity, which is a material property, is discontinuous across material interfaces.

In the worst case, which would be when every element contains a different material, R̂
would require sources on both sides of every face in Γ0 (the set of unique faces internal to the
mesh). The worst case also happens to be a common case: a radiation-hydrodynamics model
of a system with significant, turbulent advection can give rise to a mesh containing unique
materials in every element, even for an initial condition with only two unique materials
and a small interface between them. This situation is virtually unavoidable, especially in
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important physical applications, such as supernovae calculations and calculations of laser
fusion experiments (see Appendix A). For a three-dimensional spatial mesh formed by the
product of an equal number of hexahedral elements in each direction, the number of unique
internal faces in the mesh is,

|Γ0| = 3n2(n− 1) , (3.182)

where n is the number of elements in each direction (such that the total number of elements
|T | is n3). Thus, the number of element face sources required to compute R̂ is O(n3), which
is the same order as |T |.

For a very coarse mesh with only n = 10 elements along each axis, computing the R̂
estimator would require O(103) element internal face sources, and for a mesh with n = 1000,
the R̂ estimator would require on the order of 1 billion element internal face sources. This
would be very costly and perhaps even infeasible. As a result, it becomes necessary to
consider an alternative to R̂ for estimating T. The objective is to preserve the O(ϵ) variance
property of R̂ while removing the dependence on material interface sources. In this section, I
introduce an estimator that meets these criteria. I refer to this alternative as the “deviatoric”
estimator, as it based on calculating the deviation of the solution from isotropy.

3.8.1 Derivation of Deviatoric Estimator

Define ψ, which is the solution of the linear transport Eq. (3.39a), to be the sum of the
isotropic component and some arbitrary quantity ψ̃,

ψ =
φ

4π
+ ψ̃ . (3.183)

Notice that substituting ψ̃ = 3(Ω ·J)/(4π) into Eq. (3.183) would result in Eq. (1.21), which
is a spherical harmonics expansion truncated at the linear term. In Eq. (3.183), we truncated
at the linear term, then introduced ψ̃. By writing Eq. (3.183), we have replaced the problem
of computing ψ with the problem of computing ψ̃. Substituting Eq. (3.183) into Eq. (3.39a)
gives,

Ω · ∇
( φ
4π

+ ψ̃
)
+ σt

( φ
4π

+ ψ̃
)
=
σs
4π
φ+ q . (3.184)

Simplifying Eq. (3.184) gives,

Ω · ∇ψ̃ + σtψ̃ = − 1

4π
(σaφ+Ω · ∇φ) + q . (3.185a)

Note that the∇φ term in Eq. (3.185a) is undefined if one replaces φ with the angle integrated
intensity ϕ defined by Eq. (1.17). This is because ϕ may have points where the slope changes
discontinuously, resulting in the function being non-differentiable at those points, for example
at material interfaces. In the next section, Implementation Details of Deviatoric Estimator,
I describe how to address this problem without resorting to material interface sources.



101

Substituting Eq. (3.183) into the boundary condition Eq. (3.39b) gives,

ψ̃(x,Ω) = ψinc(x,Ω)− φ(x)

4π
, x ∈ ∂D and Ω · n < 0 , (3.185b)

where I have replaced ψ̄ with ψinc in Eq. (3.185b) for notational clarity, as it is less likely
to confuse ψinc with ψ̃ than to mistake ψ̄ for ψ̃. Observe that we have replaced the linear
transport problem defined by Eq. (3.39a), subject to the boundary condition Eq. (3.39b),
with the linear transport problem defined by Eq. (3.185a), subject to the boundary condition
Eq. (3.185b). We can relate the new problem to the old by using Eq. (3.183) to derive new
estimators.

We start by considering the angle integrated intensity Eq. (1.17). Substituting Eq. (3.183)
into Eq. (1.17) gives,

ϕ =

∫

S2

( φ
4π

+ ψ̃
)
dΩ . (3.186)

Simplifying Eq. (3.186) gives,

ϕ = φ+

∫

S2
ψ̃ dΩ . (3.187)

Define ϕ̃ to be,

ϕ̃ =

∫

S2
ψ̃ dΩ , (3.188)

and substitute Eq. (3.188) into Eq. (3.187) to get,

ϕ = φ+ ϕ̃ . (3.189)

For the pressure, substituting Eq. (3.183) into Eq. (1.19) and simplifying gives,

P =
φ

3
I+ P̃ , (3.190)

where we define P̃ to be,

P̃ =

∫

S2
Ω⊗Ω ψ̃ dΩ . (3.191)

Finally, consider the boundary functional B(ψ) in Eq. (1.25). Substituting Eq. (3.183) into
Eq. (1.25) gives,

B =

∫

S2
|Ω · n|

( φ
4π

+ ψ̃
)
dΩ . (3.192)

Simplifying Eq. (3.192) gives,

B =
φ

2
+ B̃ , (3.193)

where we define B̃ to be,

B̃ =

∫

S2
|Ω · n| ψ̃ dΩ . (3.194)
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We can now define new, deviatoric estimators using the new, deviatoric forms of ϕ, P, and
B(ψ) in Eq. (3.189), Eq. (3.190), Eq. (3.193), respectively. The estimators are,

ϕ̂new = φ+ ˆ̃ϕ , (3.195a)

P̂new =
φ

3
I+ ˆ̃P , (3.195b)

T̂new = P̂new −
1

3
Iϕ̂new , (3.195c)

B̂new =
φ

2
+ ˆ̃B , (3.195d)

ϕ̂new,s = φ+ ˆ̃ϕs , (3.195e)

β̂new = B̂new −
1

2
ϕ̂new,s , (3.195f)

where the symbols with hats above tildes denote the estimator of the symbol with the tilde.

For example, ˆ̃ϕ is an estimator of ϕ̃. The hat-and-tilde symbols in Eqs. (3.195a) to (3.195f)

are: ˆ̃ϕ, ˆ̃P, ˆ̃B, and ˆ̃ϕs. We can compute these estimators using the ϕ̂, P̂, B̂ and ϕ̂s estimators
that we previously derived in this chapter. The only difference is the source expressions,
for which I provide more detail in the next section, Implementation Details of Deviatoric
Estimator.

After we compute ˆ̃ϕ, ˆ̃P, ˆ̃B, and ˆ̃ϕs, we form the new estimators in Eqs. (3.195a) to (3.195f)
by simply adding linear terms which are functions of φ. The addends account for the isotropic
component of the new estimators. The new angle integrated intensity estimator ϕ̂new is the
deviatoric HSM method solution, and the associated SMM data are now T̂new and β̂new.

Finally, note that the isotropic components of the new estimators cancel when forming
the new SMM data, T̂new and β̂new. The φ term in ϕ̂new cancels with the (φ/3)I term in P̂new

when forming T̂new. Substituting Eq. (3.195a) and Eq. (3.195b) into Eq. (3.195c) gives,

T̂new = P̂new −
1

3
Iϕ̂new

=
(φ
3
I+ ˆ̃P

)
− 1

3
I
(
φ+ ˆ̃ϕ

)

= ˆ̃P−
ˆ̃ϕ

3
I . (3.196)

Eq. (3.196) implies an alternative notation for T̂new,

ˆ̃T = ˆ̃P−
ˆ̃ϕ

3
I , (3.197)



103

where ˆ̃T = T̂new, as established by Eq. (3.196). The φ/2 term in B̂new cancels with the φ term
in ϕ̂new,s when forming β̂new. Substituting Eq. (3.195d) and Eq. (3.195e) into Eq. (3.195f)
gives,

β̂new = B̂new −
1

2
ϕ̂new,s

=
(φ
2
+ ˆ̃B

)
− 1

2
(φ+ ˆ̃ϕs)

= ˆ̃B − 1

2
ˆ̃ϕs . (3.198)

Eq. (3.198) implies an alternative notation for β̂new,

ˆ̃β = ˆ̃B − 1

2
ˆ̃ϕs , (3.199)

where ˆ̃β = β̂new, as established by Eq. (3.198).

3.8.2 Implementation Details of Deviatoric Estimator

Comparing Eqs. (3.39a) and (3.39b) with Eqs. (3.185a) and (3.185b), we see that the sources
in the new problem differ from the sources in the original problem. Table 3.4 shows the
expressions for the volume and boundary sources.

Fixed Variable

Volume q
σs
4π
φ O(ϵ) O(1/ϵ)

Boundary ψinc 0 O(1) N/A

Fixed Variable

Volume q − 1
4π
(σaφ+Ω · ∇φ) O(ϵ) O(1)

Boundary ψinc − φ

4π
O(1) O(1)

Table 3.4: Source values and TDL orders for the original problem (top) and deviatoric
problem (bottom).

Table 3.4 shows that, unlike the variable volume source in the original problem, the
variable volume source in the deviatoric problem has a finite magnitude in the TDL. However,
the source is more complicated because it involves derivatives of φ. This requires us to
increase the order of the finite element space Yp, defined in Eq. (2.19), from zero to unity,
because we need φ to be at least linear in order for φ to have nonzero derivative. This
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increases the number of degrees-of-freedom per element for φ from unity to four, hence raising
the cost of the deterministic component described in Chapter 2. However, the increase in
cost is minimal relative to the total cost, because the deterministic component accounts for
only about 1% of the total HSM calculation runtime. Computing the gradient of the linear
polynomial φ is also relatively inexpensive.

Table 3.4 also shows that, unlike the variable boundary source in the original problem,
the variable boundary source in the deviatoric problem is nonzero. This means that we now
need to source particles on the domain boundary (in addition to the domain volume) during
the HSM iteration, and evaluate φ on the domain boundary at the locations of the boundary
source particles. This is an expensive part of the deviatoric approach. However, it is orders
of magnitude less expensive than the material interface sources required by R̂.

Consider, for example, the unit cube domain, D = [0, 1]3. Discretize D with a mesh
containing one billion elements, which is only 1000 elements along each axis. Evolve a
turbulent, advective, multimaterial problem in time until the material interfaces are gone,
and every element contains a unique mixture of the different materials. Computing R̂ on
this mesh would require sampling O(109) surface sources every cycle of the HSM iteration,
which would be difficult, if not infeasible. Computing T̂new would require sampling just six
surface sources every cycle of the HSM iteration, one on each face of the unit cube.

An issue with the deviatoric estimator that I mentioned in the previous section, Derivation
of Deviatoric Estimator, is the undefined derivative when ∇ϕ replaces ∇φ in Eq. (3.185a).
This issue can be solved by replacing φ in Eq. (3.183) with some arbitrary function φ̇ for
which ∇φ̇ is well-defined. Substituting ψ = φ̇/(4π) + ψ̃ into Eq. (3.39a) gives,

Ω · ∇
( φ
4π

+ ψ̃
)
+ σt

( φ
4π

+ ψ̃
)
=

(σt − σa)
4π

φ+ q , (3.200)

where I replaced σs with σt − σa. Simplifying Eq. (3.200) gives,

Ω · ∇ψ̃ + σtψ̃ =
σt
4π

(φ− φ̇)− 1

4π
(σaφ+Ω · ∇φ) + q . (3.201)

Eq. (3.201) highlights a crucial property that our choice of φ̇must satisfy for the deviatoric
estimator to be efficient: φ − φ̇ must be O(1/σt). The reasoning behind this property will
become clearer in the next section, Derivation of Deviatoric Estimator Variance in the Thick
Diffusion Limit, where I show that Var[T̂new] is O(ϵ) in the TDL. The derivation of Var[T̂new]
demonstrates that a necessary condition for the O(ϵ) variance is that the right-hand side of
Eq. (3.185a) is O(1) in the TDL. Observe, however, that the right-hand side of Eq. (3.201)
is O(1/ϵ) in the TDL. This is because the term involving φ− φ̇ is O(1/ϵ) in the TDL. Thus,
preserving the O(ϵ) variance in the TDL requires choosing φ̇ such that φ − φ̇ is O(1/σt).
This choice causes σt/(4π) and φ − φ̇ to be the product of terms which are O(1/ϵ) and
O(ϵ) in the TDL. The product of a term which is O(1/ϵ), and a term which is O(ϵ), is
O(1). Consequently, the necessary condition that the right-hand side of the linear transport
equation is O(1) is satisfied.
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As an example, consider a problem with two materials, one which is optically-thick and
one which is optically-thin. Denote the total opacities of the optically-thick and optically-
thin materials as σthick

t and σthin
t , respectively. Let φ̇1 denote the choice of φ̇ for this problem.

The functional form of φ̇1 could be,

φ̇1 =

{
φ for {x |σt(x) = σthick

t } ,
argminE[u] for {x |σt(x) = σthin

t } , (3.202)

where the minimization in Eq. (3.202) is performed with respect to the Dirichlet energy,

E[u] =
1

2

∫
||∇u(x)||2 dx . (3.203)

Minimizing the energy norm is equivalent to solving a Poisson problem, for which we would
use the Dirichlet boundary condition,

u(x) = φ(x) for x ∈ ∂D . (3.204)

To illustrate the purpose of φ̇1, assume that the angle integrated intensity which solves the
linear transport equation for the thick-thin problem is the absolute value function,

ϕ(x) = |x− 3|+ 1 . (3.205)

In Fig. 3.8, I plot Eq. (3.205) alongside the function φ̇1. In the optically-thick region, φ̇1 is
equal to ϕ. In the optically-thin region, minimizing the Dirichlet energy offers an alternative
to ϕ, ensuring that ∇φ̇1 is well-defined everywhere.

3.8.3 Derivation of Deviatoric Estimator Variance in the Thick
Diffusion Limit

We apply the same machinery that we developed in section 3.6, and used in section 3.7.3,
to derive the variance of the deviatoric estimator for T in the TDL. In section 3.6, we
determined that Var[T̂] is O(1/ϵ) in the TDL. In section 3.7.3, we determined that Var[R̂]
is O(ϵ) in the TDL, which represents a significant improvement, as O(ϵ) ≪ O(1/ϵ). Here,
we derive Var[T̂new], which we find to be O(ϵ) in the TDL. This result indicates that T̂new

is superior to both R̂ and T̂. Although R̂ and T̂new have the same O(ϵ) variance in the
TDL, T̂new is a more efficient estimator because it is cheaper to compute than R̂ (due to
the absence of material interface sources).

The derivation of Var[T̂new] follows the logic outlined in section 3.7.3, beginning with
modifications to the quantities in the R̂ row of table 3.3. In the table, the boundary source
for computing the R̂ estimator is,

ψ
(1)
inc =

−1
σt
Q , (3.206)
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x

x = 3

thin thick

Figure 3.8: The function ϕ(x) = |x − 3| + 1, which has undefined derivative at x = 3, is
adjusted in the thin region (x < 3) such that the derivative becomes well-defined for all x
values.

and the volume source for computing R̂ is,

Q(1) =
−1
σt

Ω · ∇Q . (3.207)

Replace the boundary source with,

ψ̃inc = ψinc −
φ

4π
, (3.208)

and the volume source with,

Q̃ =
−1
4π

(σaφ+Ω · ∇φ) + q , (3.209)

which are simply the boundary source and the volume source from the deviatoric linear
transport Eq. (3.185a) and boundary condition Eq. (3.185b). In the TDL, Eq. (3.209) is,

Q̃ =
−1
4π

(ϵσaφ+Ω · ∇φ) + ϵq , (3.210)

and the terms in Eq. (3.210) scale as,

−1
4π︸︷︷︸
O(1)

(ϵσaφ︸︷︷︸
O(ϵ)

+Ω · ∇φ︸ ︷︷ ︸
O(1)

) + ϵq︸︷︷︸
O(ϵ)

︸ ︷︷ ︸
O(1)

. (3.211)
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Thus, Q̃ is O(1). This is the same order as Q(1). Per section 3.7.3, an order unity volume

source leads to an estimator which is O(ϵ) in the TDL9. This means that ˆ̃ϕ and ˆ̃P, which
are estimators that appear in Eqs. (3.195a) and (3.195b) for ϕ̂new and P̂new, respectively, are
both O(ϵ) in the TDL. The last step before we obtain Var[T̂new] is to obtain Var[ϕ̂new] and
Var[P̂new].

The variance of Eq. (3.195a) is,

Var[ϕ̂new] = Var[φ+ ˆ̃ϕ] . (3.212)

If we treat φ as a constant10, then Eq. (3.212) simplifies to,

Var[ϕ̂new] = Var[ ˆ̃ϕ] , (3.213)

which is O(ϵ). Similarly, the variance of Eq. (3.195b) is,

Var[P̂new] = Var
[φ
3
I+ ˆ̃P

]
, (3.214)

Again, if φ is considered a constant, then Eq. (3.214) simplifies to,

Var[P̂new] = Var[ˆ̃P] , (3.215)

which is also O(ϵ). From Eq. (3.143), we have that,

Var[T̂new] = Var[P̂new] +
1

9
IVar[ϕ̂new]− 2Cov

[
P̂new,

1

3
Iϕ̂new

]
, (3.216)

After writing Eq. (3.143), I argued that Var[T̂] is O(1/ϵ) in the TDL by demonstrating that
all three terms in Eq. (3.143) are of the same order, O(1/ϵ). The sum of three terms with
the same order remains of the same order, O(1/ϵ). Using the same reasoning (outlined in the
enumerated paragraphs following Eq. (3.143)), I claim that the three terms in Eq. (3.216)
are all O(ϵ). Therefore, the sum of these terms is also O(ϵ).

Thus, Var[T̂new] is O(ϵ).

9Read section 3.7.3 beginning at Eq. (3.172) and observe that the result is the same if one substitutes Q̃
for Q(1) in the equations that follow.

10Although φ varies during the HSM iteration, it is fixed during each cycle of the HSM iteration, including
during the Monte Carlo transport solve.
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Chapter 4

Combining the Two Components of
Hybrid Second Moment

In this chapter, I collect the results of Chapters 2 and 3 which are necessary for my HSM
implementation and concisely present them with details on how I combine the deterministic
and Monte Carlo components to create the hybrid method. The hybrid quality of the method
is immediately apparent in section 4.1, where I discuss the convergence numerics, which have
a Monte Carlo term and a deterministic term. In section 4.2, I describe how I separate the
fixed source and the scattering source, which is made possible by the hybrid method, because
a fully deterministic SMM cannot treat them separately. I describe my HSM algorithm in
section 4.3. Finally, I describe choices that I made in my HSM implementation in section 4.4,
such as my choice of how many spatial dimensions to consider.

4.1 Numerical Properties

We hypothesize that the error of the HSM solution is O(h) + O(N−1/2). The first term is
due to the hp+1 convergence of the mixed finite element discretization of the SMM system,
where p = 0 in our case because we use lowest-order finite elements. Thus, decreasing the
numerical error due to the spatial discretization by a factor of 2 requires decreasing the
element width h by the same factor. The second term is due to the Var[·]/

√
N uncertainty

of the estimators computed in the Monte Carlo component of HSM. Thus, decreasing the
uncertainty of the MC estimators by a factor of 2 requires increasing the number of MC
particles N by a factor of 4.

4.2 Separating the Sources

There are two sources of photons in Eq. (3.39a), the fixed source q and the scattering source,
which is the product of σs/(4π) and φ. As the name implies, the fixed source does not
change, whereas the scattering source changes with each iteration of the HSM method.



109

This is not only true of HSM. The scattering source changes with each iteration of SMM.
Deterministic SMM calculations must add the fixed source into the scattering source iterate
every cycle in order to compute the right-hand side vector for the linear system which is
inverted using the matrix-free transport sweep. Our hybrid SMM method incorporates the
effect of the scattering source by having the MC particles carry the weight of the scattering
source iterate every cycle.

Using Monte Carlo instead of a transport sweep allows for the sources to be separated.
That is, we may use MC to sample q and ψinc before iterating, then sample the scattering
source in the iteration. This allows us to re-use all of the particle memory devoted to
sampling q and ψinc (before the iteration) for sampling the scattering source (inside the
iteration). It also allows us to compute the first cycle moment solution iterate φ(1) using
nonzero correction estimates T̂ and β̂, which will be better approximations than using zero
for problems where T and β are nonzero. Finally, separation provides sampling flexibility,
in that the position and direction of simulation particles can be sampled differently for q,
ψinc, and the scattering source. The cost of separating the sources is the extra memory usage

required to store the pre-iteration estimators φ(0), T̂
(0)
, and β̂(0). The storage cost of the

estimators grows linearly with the number of mesh elements.

4.3 Hybrid Second Moment Algorithm

Algorithm 3 shows how to use a Monte Carlo solver to implement HSM while also preserving
the functionality of an unaccelerated MC solver. Lines 3-5 run the Monte Carlo solver defined
by Algorithm 2 without HSM. Lines 7-17 implement HSM. Line 8 runs the same MC solver
to sample the fixed source q and compute tallies while disregarding the scattering source,
thus computing the unscattered contribution to the solution, which I have decomposed as
ϕ = ϕunscattered+ϕscattered. This allows me to reuse all the MC particle memory that I allocate
for sampling the fixed source to sample the scattering source. Line 9 initializes the iteration
index i to 1. The loop, which I describe in the next paragraph, iterates until convergence of
the scattering source, which is slightly different in every cycle.

Line 11 runs the Second Moment solver defined by Algorithm 1, which uses the fixed

source angular moments Q0 and Q1 as well as the SMM data T̂
(i−1)

and β̂(i−1). The i in the
superscript is the iteration index, so a quantity with superscript (i − 1) is an iterate from
the previous cycle. The coefficient matrix and right-hand-side integrals involving Q0 and Q1

must be computed on the first cycle of the iteration, but can then be stored and re-used for
subsequent cycles. Only the integrals involving T and β, which are linear forms that appear
on the right-hand side of Eq. (2.22b), must be recomputed every cycle. Line 13 runs the
MC solver to sample the scattering source, which is the product of σs/(4π) and φ

(i). I store
the tallies computed during the scattering source sampling in temporary variables denoted
by the “temp” subscript. Lines 13-15 update the iterates by accumulating the scattered
tallies into the unscattered tallies, and line 16 updates the iteration index. Line 18 returns
the solution, which is the MC tally that was computed upon convergence of the scattering
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source, ϕ̂(i). The iteration converges when the relative difference of successive iterates falls
below a user-provided threshold η,

max
j

(
|ϕ̂(i−1)

j − ϕ̂(i)
j |

ϕ̂
(i−1)
j

)
< η , j = 1, . . . , |T | , (4.1)

where |T | is the number of elements in the mesh.

Algorithm 3 Hybrid Second Moment

1: Input: user-provided boolean value HSM
2: if not HSM then
3: scattering events ← true
4: ϕ̂← mc(q, scattering events, ψ̄)
5: return ϕ̂
6: end if
7: scattering events ← false

8: ϕ̂(0), T̂
(0)
, β̂(0) ← mc(q, scattering events, ψ̄)

9: i← 1
10: while not converged(ϕ̂(i−1), ϕ̂(i)) do

11: φ(i) ← sm(Q0,Q1, T̂
(i−1)

, β̂(i−1))
12: ϕ̂temp, T̂temp, β̂temp ← mc(φ(i), scattering events)

13: ϕ̂(i) ← ϕ̂(0) + ϕ̂temp

14: T̂
(i) ← T̂

(0)
+ T̂temp

15: β̂(i) ← β̂(0) + β̂temp

16: i← i+ 1
17: end while
18: return ϕ̂(i)

4.4 Implementation Specifics

In this dissertation, my description of the HSM method takes into account all three spatial
dimensions, but an effective demonstration of the method might use less. In section 4.4.1,
I present a few choices of different dimensionalities, and explain how I selected two spatial
dimensions for my implementation. An implementation ultimately requires a programming
language, compiler, platform, and other details. I describe my choices for these in sec-
tion 4.4.2. The choices that I made are simply one way to implement my HSM method.
They are not necessarily better than alternative implementation choices.
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4.4.1 Dimensionality

The radiation intensity is seven dimensional because I = I(x,Ω, ν, t) has 3+2+1+1=7 in-
dependent variables. While x = (x, y, z)T and Ω = (Ωx,Ωy,Ωz)

T are both three-vectors,
the latter is normalized to unity, |Ω| = 1, which means that it may be specified using two
dimensions instead of three. Those dimensions are the azimuthal angle ϕ and polar angle θ,
as shown in Fig. 4.1. The three elements of Ω are the projections of Ω onto the coordinate
axes,

Ω =



Ωx

Ωy

Ωz


 =



Ω · ex
Ω · ey
Ω · ez


 =



Ω · (1, 0, 0)T
Ω · (0, 1, 0)T
Ω · (0, 0, 1)T


 =



sin θ cosϕ
sin θ sinϕ

cos θ


 . (4.2)

x

y

z

Ω = (Ωx,Ωy,Ωz)
T

Ωx

Ωyϕ

θ

Ωz

Figure 4.1: The direction vector Ω.

In section 1.3.2, I said that if one disregards time- and frequency-dependence, then one
may consider a reduced-dimensional intensity ψ = ψ(x,Ω) that has only 3+2=5 coordinates.
If one additionally assumes azimuthal symmetry of the solution, then ∂ψ/∂x = ∂ψ/∂y = 0,
and the solution is only two dimensional, ψ = ψ(z, µ), where µ = cos θ is the projection of
Ω onto the z-axis. This is captured by Column V of table 4.1.

One spatial dimension would simplify my HSM implementation, but it may not be enough
to convincingly demonstrate HSM because many aspects of the deterministic component of
HSM are greatly simplified. In one spatial dimension,

• the current J is a scalar,
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Column I Column II Column III Column IV Column V
Full Steady-State Gray 2D Cartesian 1D Slab

Transport
7 coordinates 6 coordinates 5 coordinates 4 coordinates 2 coordinates
x, y, z, θ, ϕ, ν, t x, y, z, θ, ϕ, ν x, y, z, θ, ϕ x, y, θ, ϕ z, µ

.
= cos θ

Moment
5 coordinates 4 coordinates 3 coordinates 2 coordinates 1 coordinate
x, y, z, ν, t x, y, z, ν x, y, z x, y z

Table 4.1: Transport equation and moment system dimensionality reductions.

• the gradient and divergence are just ordinary derivatives, and

• the RT space is a discrete subspace of H1(D) because there is no distinction between
H(div;D) and H1(D).

The simplified, azimuthally symmetric geometry is called “1D Slab” geometry because it has
just a single spatial dimension in Cartesian space, as opposed to having a single dimension in
curvilinear space, which is called “1D spherical” geometry. Assume instead that the solution
does not change along the z-axis. That is, ∂ψ/∂z = 0. The solution is then four dimensional,
ψ = ψ(x,Ω), where x = (x, y)T and Ω has the usual dependence on the azimuthal and
polar angle coordinates. Two spatial dimensions preserves the vector current, preserves the
distinction of the gradient and divergence, and preserves the distinction of H(div;D) and
H1(D). I use the term “2D Cartesian” (or “2D XY”) for this geometry because it has two
spatial dimensions in Cartesian space, as opposed to having two dimensions in curvilinear
space, which I call “2D Curvilinear” (or “2D RZ”) geometry. It is captured by Column IV
in table 4.1 and it is the geometry type of my HSM implementation.

An example of the oversimplification that 1D geometries provide manifests in angular
integration, which is the same for table 4.1 Columns I-IV, but differs for Column V,

Column I-IV :

∫

S2

(·) dΩ =

∫ π

θ=0

∫ 2π

ϕ=0

(·) sin θ dϕ dθ ,

Column V :

∫

S2

(·) dΩ =

∫ 2π

ϕ=0

dϕ

∫ 1

µ=0

(·) dµ = 2π

∫ 1

µ=−1

(·) dµ .

Even methods for problems without angular dependence encounter oversimplification in 1D.
One example occurs when solving the Navier-Stokes equations for fluid dynamics, where
Lagrangian is strictly superior to Eulerian because it is impossible to have mesh tangling
in 1D. Thus, neither 1D Lagrangian nor 1D Eulerian tangle, yet the latter has additional
numerical error due to mass advection, so 1D Lagrangian is superior. For the same reasons,
1D Arbitrary Lagrangian-Eulerian (ALE) also makes no sense, yet both Eulerian and ALE
are incredibly important methods for hydrodynamics. One who never leaves 1D would
disagree.
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4.4.2 Programming Language, Compiler, Platform, and
Dependencies

I implemented HSM in less than 5000 lines of code that I wrote using the C and C++
programming languages [77, 78]. I used C everywhere except for the SMM solver which is
C++ because it uses the MFEM finite element library which is written in C++ [79]. My
SMM solver is a lightly modified copy of the mixed FEM SMM solver implemented by Olivier
in [7]. My C code adheres to the C99 standard with GNU extensions (-std=gnu99) and my
C++ code adheres to the C++11 standard (-std=c++11). I compile with gcc and g++
versions 10.3.1 and link with the mvapich 2.3.7 implementation [80] of the MPI standard.
I run on the Lawrence Livermore National Laboratory (LLNL) RZWhippet cluster, which
has two sockets per node. Each socket has one Intel Xeon Platinum 8479 “Sapphire Rapids”
processor, providing 56 CPU cores per socket, for a total of 112 cores per RZWhippet node
[81]. I use one MPI rank per core, so I run 112 ranks on 1 node, 224 ranks on 2 nodes, and
so on. The operating system is a Linux distribution based off RHEL8 called TOSS [82]. I
link my executable with the following libraries,

• Lua 5.4.6 [83]

• IREP 1.0.0 [84]

• MFEM 4.6 [79]

• SuperLU 6.0.1 [61]

• HDF5 1.14.3 [85]

• GPerfTools 2.15 [86]

I use Lua (with IREP) for parsing user input, MFEM and SuperLU for the SMM solver,
HDF5 to write the solution, and GPerfTools to generate program counter sampling and heap
memory allocation profiles. I used address sanitizer (-fsanitize=address) to find memory
errors and gdb for general debugging.

I wrote tens of thousands of lines of code prototyping 1D and 2D implementations of my
HSM method in Python, using a finite difference method instead of the mixed finite element
method. I also wrote thousands of lines of Python code while experimenting with MFEM
using PyMFEM, which is MFEM’s Python interface [87]. My results in [88] are from my 1D
and 2D Python prototypes. My results in [89] and here in this dissertation are from my C
and C++ implementation, which is 2D.
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Chapter 5

Non-deviatoric Numerical Results

This chapter describes numerical results that I collected by running calculations using my
HSM implementation. The three categories of results which I present are i) the verification
of my HSM implementation using the Method of Manufactured Solutions, ii) the efficiency
of my HSM implementation in the thick diffusion limit, and iii) the effectiveness of my HSM
implementation on two-material problems composed of one optically-thick material and one
optically-thin material. The aforementioned categories i) and ii) appear in sections 5.1
and 5.2, respectively. Category iii) is constituted by both sections 5.3 and 5.4, each of which
include a thick-and-thin two-material problem, but with different geometries and sources.

Implementers of numerical methods distinguish between method “verification” and “val-
idation”. Verification answers the question,

Are we solving the equations right?

Validation answers the question,

Are we solving the right equations?

An example of verification is the comparison of the numerical solution with an analytic
solution, which is a solution for which the functional form is known. An example of validation
is the comparison of the numerical solution with an experiment, such as the experiment
described in Appendix A. I run verification calculations. Validation calculations, which are
often more complicated than verification calculations, exceed the scope of this dissertation. I
present verification calculations in a single material in section 5.1 and section 5.2, and in two
materials in sections 5.3 and 5.4. My intention is to provide an interesting demonstration
of my HSM implementation that could be used to inform one’s decision whether to use my
novel HSM method in production computer simulations of hot matter.
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5.1 Method of Manufactured Solutions Problem

The Method of Manufactured Solutions (MMS) is a code verification technique in which one
chooses the analytic solution, which is called the “MMS solution”. One then substitutes
the MMS solution into the PDE to derive expressions for the problem data, which includes:
sources, boundary conditions, and the initial condition [90–92]. I use the MMS to verify
that my numerical solution converges to the MMS solution under mesh refinement and MC
sample augmentation, and that the rate of convergence with respect to the element width
and number of MC particles matches my hypothesis of O(h) +O(N−1/2). My hypothesized
convergence rate O(h) + O(N−1/2) defines an error surface that decreases in height as one
traverses simultaneously upward and rightward in Fig. 5.1.
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Figure 5.1: Calculation points on the HSM error surface.

By making h small and running multiple calculations with increasing N in the “particle
scaling study”, I observe the O(N−1/2) term in the hypothesized convergence rate, and by
making N large and running multiple calculations with decreasing h in the “element scaling
study”, I observe the O(h) term. I let D = [0, 1]2, σt = 2, σs = 1, and I solve the problem
specified by Eqs. (1.13a) and (1.13b) for the MMS solution in Equation (89) in [39]. The
MMS solution is,

ψMMS(x,Ω) =
1

4π

(
sin(πx) sin(πy) +ΩxΩy sin(2πx) sin(2πy)

+Ω2
x sin

(5π
2
x+

π

4

)
sin
(5π
2
y +

π

4

)
+ 0.5

)
. (5.1)

I substitute the MMS solution into the equations on the left of Fig. 1.3 and solve for q
and ψ̄ and use them in the MC component of my HSM solver, and I substitute the MMS
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solution into the equations on the right of Fig. 1.3 and solve for Q0, Q1, and Jin and use
them in the deterministic component of my HSM solver. Eq. (5.1) cannot be computed
with the radiation diffusion approximation because it is quadratically-anisotropic. Eq. (5.1)
exercises the coupling of the MC component of HSM with the deterministic component of
HSM because it has nonzero SMM data T ̸= 0 and β ̸= 0. Finally, Eq. (5.1) exercises my
implementation of the boundary conditions because it has nonzero inflow ψ̄ ̸= 0, and so
Jin ̸= 0.

The solution that I calculate with HSM is the angle integrated intensity, which I can
express analytically by integrating Eq. (5.1) over the unit sphere to get,

ϕMMS(x) = sin(πx) sin(πy) +
1

3
sin

(
5π

2
x+

π

4

)
sin

(
5π

2
y +

π

4

)
+ 0.5 . (5.2)

The HSM solution is an estimator of the angle integrated intensity averaged over each ele-
ment. Averaging Eq. (5.2) over an arbitrary rectangle gives the analytic expression to which
I compare my HSM solution,

ϕ̄MMS(x1, x2, y1, y2) =
1

((x2 − x1)(y2 − y1))

∫ x2

x1

∫ y2

y1

ϕMMS(x) dy dx . (5.3)

Evaluating the integrals in Eq. (5.3) gives the final analytic expression,

ϕ̄MMS(x1, x2, y1, y2) =
1

((x2 − x1)(y2 − y1))

(
1

π2

{[
cos(πx2)−cos(πx1)

][
cos(πy2)−cos(πy1)

]}

+
4

75π2

{[
cos

(
5π

2
x2 +

π

4

)
−cos

(
5π

2
x1 +

π

4

)][
cos

(
5π

2
y2 +

π

4

)
−cos

(
5π

2
y1 +

π

4

)]})
.

(5.4)

I use a computational mesh of equally-sized squares, so I simply evaluate Eq. (5.4) using
the x1, x2, y1, and y2 values which define the left, right, bottom, and top edges of each square
in my mesh. Fig. 5.2 shows plots of ϕMMS and ϕ̄MMS on the calculation domain D = [0, 1]2.
I determine the error of my numerical solution with respect to Eq. (5.4) by computing the
norm of the difference in the following manner.

First, define the width of the rectangles in a mesh of equal-sized rectangles to be,

∆x = 1/Nx , (5.5a)

where Nx is the number of elements along the x-axis, or equivalently the number of columns
in the mesh. Define the height of the equal-sized rectangles to be,

∆y = 1/Ny , (5.5b)

where Ny is the number of elements along the y-axis, or equivalently the number of rows in

the mesh. Let ϕ̂i,j correspond to the value of the estimator in row i and column j of the
mesh, i = 1, . . . , Ny and j = 1, . . . , Nx, as in Fig. 5.3.
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(a) ϕMMS(x) (b) ϕ̄MMS(x1, x2, y1, y2)

Figure 5.2: The MMS solution Eq. (5.2) and its average Eq. (5.4) on D = [0, 1]2.

Let ϕ̂q(x, y) : [0, 1] × [0, 1] → {ϕ̂i,j | i, j ∈ Z, 1 ≤ i ≤ Ny, 1 ≤ j ≤ Nx} be a quantization
function defined by,

ϕ̂q(x, y) =





ϕ̂1,1 x < ∆x and y < ∆y

ϕ̂1,2 ∆x < x < 2∆x and y < ∆y
...

...

ϕ̂1,Nx (Nx − 1)∆x < x < 1 and y < ∆y

ϕ̂2,1 x < ∆x and ∆y < y < 2∆y

ϕ̂2,2 ∆x < x < 2∆x and ∆y < y < 2∆y
...

...

ϕ̂2,Nx (Nx − 1)∆x < x < 1 and ∆y < y < 2∆y
...

...
...

...

ϕ̂Ny ,Nx (Nx − 1)∆x < x < 1 and (Ny − 1)∆y < y < 1 .

(5.6)

Let ϕ̄ be a MMS solution tensor with dim(ϕ̄) = dim(ϕ̂) defined by,

ϕ̄i,j = ϕ̄MMS

(
(i− 1)∆x, i∆x, (j − 1)∆y, j∆y

)
, (5.7)

where ϕ̄MMS is Eq. (5.4) and i, j ∈ Z, 1 ≤ i ≤ Ny, 1 ≤ j ≤ Nx. Let ϕ̄q
MMS(x, y) be another

quantization function, defined exactly like ϕ̂q(x, y), but with ϕ̂ in Eq. (5.6) replaced by ϕ̄
as defined in Eq. (5.7). Define the numerical error of the HSM method with respect to the
MMS solution as e(x, y) : [0, 1]× [0, 1]→ R,

e(x, y) = ϕ̂q(x, y)− ϕ̄q
MMS(x, y) . (5.8)
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The continuous L2(D) norm of e(x, y) is,

||e(x, y)||2 =
√∫ 1

0

∫ 1

0

|e(x, y)|2 dy dx . (5.9)

Approximate Eq. (5.9) using a Riemann sum,

||e(x, y)||2 ≈

√√√√
Ny∑

i=1

Nx∑

j=1

|e(xi, yi)|2∆x∆y

=

(∑Ny

i=1

∑Nx

j=1 |e(xi, yi)|2
)1/2

(NxNy)1/2
. (5.10)

Eq. (5.10) can be written using the vector 2-norm of the difference of ϕ̂ and ϕ̄,

(∑Ny

i=1

∑Nx

j=1 |e(xi, yi)|2
)1/2

(NxNy)1/2
=
||ϕ̂− ϕ̄||2
(NxNy)1/2

, (5.11)

where the vector 2-norm || · ||2 is defined as,

||a||2 =
√∑

i

(ai)2 , (5.12)

for some vector a with elements ai. The vector 2-norm in Eq. (5.11) is for the flattened
representation where ϕ̂, ϕ̄ ∈ RNyNx . In the tensor representation, ϕ̂, ϕ̄ ∈ RNy×Nx , replace the
vector 2-norm || · ||2 in Eq. (5.11) with the Frobenius norm || · ||F .

Finally, ∆x = ∆y because the equal-sized rectangular elements in my mesh are actually
equal-sized squares, so Nx = Ny, and Eq. (5.11) becomes,

||ϕ̂− ϕ̄||2
(NxNy)1/2

=
||ϕ̂− ϕ̄||2
|T |1/2 , (5.13)

where |T | is the number of elements in the mesh. The result in Eq. (5.13) is the way that
I compute the error in the element scaling study, which corresponds to the vertical line in
Fig. 5.1,

Element scaling study error =
||ϕ̂− ϕ̄||2
|T |1/2 , (5.14)

For the particle scaling study, which corresponds to the horizontal line in Fig. 5.1, the mesh
is fixed at 64× 64 elements for all 6 calculations, so I replace the normalization factor in the
denominator of Eq. (5.14) by unity,

Particle scaling study error = ||ϕ̂− ϕ̄||2 . (5.15)
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The results in Fig. 5.4 demonstrate that HSM converges under mesh refinement and MC
sample augmentation, and that the rate of convergence with respect to the element width and
number of MC particles matches our hypothesis of O(h)+O(N−1/2). The slight degradation
in convergence at the highest mesh resolution, appearing as liftoff above the dashed curve
at the bottom-left of Fig. 5.4b, is expected behavior because I distribute a fixed number of
MC particles across more and more elements under mesh refinement. I confirmed that this
was the case by running fewer MC particles and observing earlier liftoff, as well as running
more MC particles and observing delayed liftoff.

x

y ϕ̂1,1 ϕ̂1,2

ϕ̂2,1 ϕ̂2,2

ϕ̂1,Nx

ϕ̂2,Nx

ϕ̂Ny,1 ϕ̂Ny,2 ϕ̂Ny,Nx

Figure 5.3: Indexing of ϕ̂ estimator on a mesh of equal-size rectangles (in this case, squares).

5.1.1 Source Expressions

After writing the MMS solution Eq. (5.1), I mentioned that its substitution into Eq. (1.13a)
and Eq. (1.13b) results in the MMS sources for q and ψ̄, which we need for the MC solve,
and that its substitution into the SMM system of Eqs. (1.20a), (1.43) and (1.46) results in
Q0,Q1, and Jin, which we need for the moment solve. These quantities are also sometimes
called the PDE “data”. For completeness of my presentation of the MMS verification, I
present the result of the substitutions here.

The q source used in the MC solve is,

qMMS(x,Ω) = Ω · ∇ψMMS + σtψMMS −
σs
4π
ϕMMS

= Ωx
∂ψMMS

∂x
+ Ωy

∂ψMMS

∂y
+ σtψMMS −

σs
4π
ϕMMS , (5.16a)
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(a) Error as number of MC particles increases. (b) Error as element width decreases.

Figure 5.4: Error of HSM iterate ϕ̂(i) upon convergence.

where ψMMS is Eq. (5.1), ϕMMS is Eq. (5.2), and

∂ψMMS

∂x
(x,Ω) =

1

4π

(
π cos(πx) sin(πy) + 2πΩxΩy cos(2πx) sin(2πy)

+
5π

2
Ω2

x cos
(5π
2
x+

π

4

)
sin
(5π
2
y +

π

4

))
, (5.16b)

∂ψMMS

∂y
(x,Ω) =

1

4π

(
π sin(πx) cos(πy) + 2πΩxΩy sin(2πx) cos(2πy)

+
5π

2
Ω2

x sin
(5π
2
x+

π

4

)
cos
(5π
2
y +

π

4

))
. (5.16c)

The ψ̄ source used in the MC solve is,

ψ̄MMS(x,Ω) =
1

4π
+Ω2

x sin
(5π
2
x+

π

4

)
cos
(5π
2
y +

π

4

)
+ 0.5 , (5.17)

where the domain of definition is x ∈ ∂D and Ω ·n < 0. The Q0 source used in the moment
solve is,

Q0,MMS(x) = σaϕMMS , (5.18)

where ϕMMS is Eq. (5.2). The Q1 source used in the moment solve is,

Q1,MMS(x) = σtJMMS +
1

3
∇ϕMMS +∇ ·T

=
1

3




∂ϕMMS

∂x

∂ϕMMS

∂y


+




∂T 11
MMS

∂x
+
∂T 12

MMS

∂y

∂T 21
MMS

∂x
+
∂T 22

MMS

∂y


 , (5.19a)
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where the partial derivatives are,

∂ϕMMS

∂x
(x) = π cos(πx) sin(πy) +

5π

18
cos
(5π
2
x+

π

4

)
sin
(5π
2
y +

π

4

)
, (5.19b)

∂ϕMMS

∂y
(x) = π sin(πx) cos(πy) +

5π

18
sin
(5π
2
x+

π

4

)
cos
(5π
2
y +

π

4

)
, (5.19c)

∂T 11
MMS

∂x
(x) =

4

45

5π

2
cos
(5π
2
x+

π

4

)
sin
(5π
2
y +

π

4

)
, (5.19d)

∂T 12
MMS

∂y
(x) =

2π

15
sin(2πx) cos(2πy) , (5.19e)

∂T 21
MMS

∂x
(x) =

2π

15
cos(2πx) sin(2πy) , (5.19f)

∂T 22
MMS

∂y
(x) = − 2

45

5π

2
sin
(5π
2
x+

π

4

)
cos
(5π
2
y +

π

4

)
, (5.19g)

For D = [0, 1]2, the Jin source used in the moment solve has piecewise definition on the four
edges of the unit square,

Jin, MMS(x) =

∫

Ω·n<0

Ω · n ψ̄MMS dΩ

=





J right
MMS x = 1 ,

J left
MMS x = 0 ,

J top
MMS y = 1 ,

Jbottom
MMS y = 0 .

(5.20a)

We can analytically compute these four functions as follows: the functions on the vertical
boundaries are,

J right
MMS(y) =

∫

Ω·nright

Ω · nright ψ̄MMS dΩ

=

∫ π

θ=0

∫ 3π/2

ϕ=π/2

Ω ·
(
1
0

)
ψ̄MMS(1, y) sin θ dϕ dθ

= −1

8
− 1

8
sin

(
11π

4

)
sin

(
5π

2
y +

π

4

)
, (5.20b)
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and

J left
MMS(y) =

∫

Ω·nleft

Ω · nright ψ̄MMS dΩ

=

∫ π

θ=0

∫ π/2

ϕ=−π/2

Ω ·
(
−1
0

)
ψ̄MMS(0, y) sin θ dϕ dθ

= −1

8
− 1

8
sin
(π
4

)
sin

(
5π

2
y +

π

4

)
. (5.20c)

The functions on the horizontal boundaries are,

J top
MMS(x) =

∫

Ω·ntop

Ω · ntop ψ̄MMS dΩ

=

∫ π

θ=0

∫ 2π

ϕ=π

Ω ·
(
0
1

)
ψ̄MMS(x, 1) sin θ dϕ dθ

= −1

8
− 1

16
sin

(
5π

2
x+

π

4

)
sin

(
11π

4

)
, (5.20d)

and

Jbottom
MMS (x) =

∫

Ω·nbottom

Ω · nbottom ψ̄MMS dΩ

=

∫ π

θ=0

∫ π

ϕ=0

Ω ·
(

0
−1

)
ψ̄MMS(x, 0) sin θ dϕ dθ

= −1

8
− 1

16
sin

(
5π

2
x+

π

4

)
sin
(π
4

)
. (5.20e)

In the preceding Eqs. (5.20b) to (5.20e),

• I used the notation ψ̄MMS(a, b) as a concise expression for ψ̄MMS

(
(a, b)T ,Ω

)
, which is

just ψ̄MMS(x,Ω) in Eq. (5.17) with x = (a, b)T , and

• Fig. 5.5 shows the boundary surface unit normal vectors ndir for dir ∈ {right, left,
top, bottom} as well as the azimuthal bounds of integration ϕ1 and ϕ2 in the integrals∫ ϕ2

ϕ=ϕ1
.

This concludes the presentation of the MMS data.
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D = [0, 1]2nleft =

(
−1
0

)
nright =

(
1
0

)

nbottom =

(
0
−1

)

ntop =

(
0
1

)

ϕ2 =
π

2

ϕ1 = −π
2

ϕ2 =
3π

2

ϕ1 =
π

2

ϕ2 = π ϕ1 = 0

ϕ1 = π ϕ2 = 2π

Figure 5.5: The domain D = [0, 1]2 with boundary surface unit normal vectors and azimuthal
bounds of integration used for integrating Eqs. (5.20b) to (5.20e). The normals are the four
arrows emanating from the edges of the square and the azimuthal bounds are the half circles
facing the arrows. The half circles are projections of inflow hemispheres onto the xy-plane.

5.2 Thick Diffusion Limit Problem

The thick diffusion limit, which I described in section 1.3.6, is a challenging regime for
transport methods. The TDL is characterized by the asymptotic scaling parameter, also
known as the optical thickness parameter, ϵ ∈ (0, 1]. The matter becomes arbitrarily optically
thick in the limit ϵ→ 0, as evidenced by the TDL scaling Eqs. (1.48a) to (1.48d).

The TDL is challenging because popular existing methods for solving the linear transport
equation arising from TRT linearizations can be prohibitively expensive. Source iteration,
which I described in section 1.3.3, converges arbitrarily slowly in the TDL. The runtime
required to compute all Monte Carlo particle histories, which I described in section 1.3.4, is
arbitrarily large in the TDL. My novel HSM method is a new way to address this challenge.
The problems in this section are intended to show that I can calculate the diffusion limit
solution accurately and efficiently using my HSM implementation, though we will see that
this goal has yet to be achieved because my HSM implementation computes T̂, and Var[T̂]
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is O(1/ϵ).
Let D = [0, 1]2 as in section 5.1, but now define the problem data in Eqs. (1.13a)

and (1.13b) using the TDL scaling Eqs. (1.48a) to (1.48d). Thus, unlike in section 5.1
where σt and σs were constants, here they are functions of the TDL scaling parameter ϵ.
Also, q in section 5.1 was Eq. (5.16a), a complicated expression that comes from substituting
the MMS solution into Eq. (1.13a). Here, q = ϵ, which is just the TDL scaling of q defined
in Eq. (1.48d).

Consider four different optical thickness parameter values, 10−1, 10−2, 10−3, and 10−4. I
run calculations for each value using 10 million HSM volume source particles, no boundary
source particles, and a vacuum boundary condition. I compute the angle integrated intensity
averaged over each element in an 8-by-8 mesh of squares of equal size. My solution is a surface
on the xy-plane. I present HSM solution lineouts. A lineout is the line of intersection between
the solution surface and a plane. A lineout provides a 1D picture of a 2D solution in the
same way that a cross section provides a 2D picture of a 3D object. Fig. 5.6 shows that
my HSM solution appears to converge to the diffusion limit solution as ϵ → 0 because the
lineouts appear to approach an equilibrium solution in the sense that successive lineouts
differ less for smaller ϵ.

Figure 5.6: Lineouts at y = 0.5 of HSM angle integrated element averaged (AIEA) intensity
for calculations using four different values of the TDL scaling parameter ϵ.

What about runtime? The convergence depicted by Fig. 5.6, which shows solution line-
outs for four calculations using the HSMmethod, would be the same picture for unaccelerated
Monte Carlo (UMC)1. However, the runtimes of HSM and UMC in the TDL are very dif-

1UMC is just the MC method for linear transport, which I described in section 1.3.4. I use the acronym
UMC here to emphasize the fact that I have not employed any of the acceleration techniques described in
section 1.3.4, such as RW, IMD, or DDMC.



125

ferent. Fig. 5.7 shows that the HSM runtime is constant with respect to the TDL scaling
parameter, or O(1), whereas the UMC runtime increases quadratically with the inverse of ϵ,
or O(1/ϵ2). Clearly, HSM outperforms UMC in terms of runtime as ϵ→ 0.

Figure 5.7: Runtime of unaccelerated Monte Carlo (UMC) and hybrid second moment (HSM)
methods for calculations with different values of the TDL scaling parameter ϵ. The ϵ values
are 20, 2−1, 2−2, . . . , 2−13.

What about variance? A figure of merit (FOM) is a quantity by which two numerical
methods may be compared. A common FOM used with MC methods is the inverse of the
product of the variance and the runtime,

Figure of merit =
1

Var[·] T , (5.21)

where Var[·] is the variance of some estimator and T is the runtime of the calculation.
Decreasing either Var[·] or T increases the FOM. Fig. 5.7 shows that THSM < TUMC after the
optical thickness parameter value ϵ falls below a value somewhere between ϵ = 1/4 and 1/8,
and that THSM << TUMC beginning at about ϵ = 1/32, which is a result that holds for all
smaller ϵ values. This factor of ϵ2 decrease in the runtime would be useless if the variance
of the HSM estimator increased by a factor of 1/ϵ2 relative to the UMC variance, because
Eq. (5.21) shows that the FOM would be left unchanged.

I calculate the variance of the HSM solution in the TDL by running 600 realizations
of the same calculation with different PRNG seeds for each calculation. Each calculation
computes the angle integrated intensity averaged over a single mesh element. The domain
is D = [0, 1]2. I use 100 million HSM particles for each calculation. I consider five different
optical thickness parameter values, 10−1, 10−2, 10−3, 10−4, and 10−5. Thus, the total number
of calculations is 600 × 5 = 3000. I estimate the variance as the sum of squares of the
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difference of the HSM angle integrated element averaged intensity estimator realizations
with the mean estimate,

Var[ϕ̂] ≈ 1

600

600∑

i=1

(ϕ̂i − Φ)2 , (5.22)

where Φ is the mean estimate defined by,

Φ =
1

600

600∑

i=1

ϕ̂i . (5.23)

Fig. 5.8 shows that the empirical variance of the HSM estimator ϕ̂ in the TDL appears to be
O(1/ϵ), which matches our expectation based on the fact that Var[ϕ̂] should match Var[T̂],
which we derived to be O(1/ϵ) in section 3.6. The empirical support of our analytically
derived result gives us confidence that the HSM FOM is O(ϵ) in the TDL.

Figure 5.8: Estimate of the variance of the HSM angle integrated element averaged intensity.

5.3 Linearized Crooked Pipe Problem

Modeling fluid flow through a cylindrical pipe, airflow over an airfoil, and stress in a loaded
beam are all classic problems in engineering. The field of radiative transfer has its own
classic problems, such as radiative heating or cooling of a hydrogen cloud in the interstellar
medium, and ionization front propagation in the same medium. An important example of
a classic radiative transfer problem arising from the study of applied physics, which comes
from the laboratory astrophysics community at LLNL, first appeared in a technical report
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by Graziani and LeBlanc [93]. The authors describe radiation flow down a pipe with a
bend. In the quarter century since the release of the report describing it, Crooked Pipe (CP)
has become a classic problem in thermal radiative transfer. Developers of radiative transfer
methods working in applied physics frequently use CP when they present their work.

In the CP problem description, a boundary source of radiation shines on one end of an
optically-thin pipe surrounded by an optically-thick medium. Radiation flows preferentially
through the pipe, around a bend in the pipe, and then leaves the problem through a vacuum
boundary on the other end of the pipe. The radiative heating process in the CP problem
occurs due to the physical processes which I described in Chapter 1. Fig. 1.1 lists some
example processes by which the radiation gets absorbed and re-emitted.

Crooked Pipe is a time-dependent problem. The solution described in the problem state-
ment is the temperature time-series at five fiducial points inside the pipe. I solve a steady-
state simplification sometimes called the Linearized Crooked Pipe (LCP). The linearization
is equivalent to calculating one very large timestep of a backward Euler time integrator.
The timestep is such that c∆t = 103. The pipe is 1000 times optically-thinner than the
surrounding medium. Fig. 5.9 depicts the geometry, material data, and boundary conditions
for the problem. The boundary source is isotropic on the inflow hemisphere with magnitude,

ψ̄ =

{
1
2π

x = 0 and − 0.5 < y < 0.5 ,

0 otherwise .
(5.24)

Finally, there is an isotropic volume source with constant value q = 10−7 everywhere in
space.

Consider a mesh composed of squares of equal sizes. The minimal number of uniform
squares required to tessellate the LCP geometry such that all material interfaces are on
element boundaries is 14 × 8 = 112. Fig. 5.10 shows the aforementioned mesh elements,
all of which contain material with single-valued properties, because each element contains
either optically-thin pipe material, or optically-thick surrounding material, but not both.
Fig. 5.11 shows the mesh after splitting each element into four squares of equal size to create
a new mesh with 28 × 16 elements. Repeating this refinement operation three more times
results in a 224 × 128 mesh, with 28,672 square elements, which is the mesh that I used
in my calculations. I set the convergence threshold η in the convergence criterion Eq. (4.1)
to 10−3. I computed a piecewise constant angle integrated intensity using my ϕ̂ estimator
of ϕ, which I derived in section 3.3.2. My estimator approximates the average of ϕ on each
element, meaning that it is single-valued within a mesh element.

I ran three calculations. I computed the HSM solution using 8 billion simulation particles,
I computed the UMC solution using 16 million simulation particles, and I computed the
radiation diffusion approximation solution. Fig. 5.12 shows pseudocolor plots of the solutions.
A “pseudocolor” plot uses different colors to represent various values of a specific quantity
in an image or diagram. For example, it can illustrate flow velocity in a pipe, pressure
on an airfoil, or, in this case, angle-integrated radiation intensity in a bent pipe. In this
representation, higher intensities are depicted with bright orange, with the highest intensities
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appearing as a very bright yellow, while lower intensities are shown in dark purple, and the
lowest are rendered in black.
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Figure 5.9: Linearized Crooked Pipe geometry, material data, and boundary conditions [39].
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Figure 5.10: Uniform mesh of the Linearized Crooked Pipe geometry, |T | = 14× 8 = 112.

Figure 5.11: Refined mesh, |T | = 28× 16 = 448.
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(a)

(b)

(c)

Figure 5.12: HSM (a), UMC (b), and diffusion (c) solutions for the linearized crooked pipe.
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Four comments regarding the solutions in Fig. 5.12 are:

1. My UMC solution closely matches the SN solution in Fig 9 (b) in Olivier et al. [39].
Both have bright inner wall illumination and dark outer wall shadows characteristic of
transport solutions. Additionally, the maximum colorbar values agree to within 1.06%.

2. My diffusion solution closely matches the diffusion solution in Fig 9 (c) in Olivier et al.
[39]. The radiation diffusion approximation gives a solution with a substantial approx-
imation error, in this case 20%, as judged by the ratio of the colorbar maximum values
(assuming that the UMC solution is the correct solution). The diffusion approximation
radiation wavefront speed also appears to be fast, as expected, relative to transport,
as evidenced by the substantially enhanced brightness of the outer wall and the region
in between the outer wall and the far end of the pipe.

3. My radiation diffusion approximation calculation is simply my SMM solver from my
HSM implementation with the transport correction set to zero. This is because SMM
reduces to radiation diffusion when T = 0 and β = 0.

4. Running fewer than 8 billion particles in the HSM calculation, or fewer than 16 mil-
lion particles in the UMC calculation, causes visible noise to appear in the solution.
The factor of 500 more particles required for the HSM calculation is an undesirable
consequence of the Var[ϕ̂] = O(1/ϵ) result that I derived in section 3.6, and for which
I provided supporting empirical evidence in Fig. 5.8.

5.3.1 Particle-Equivalent Comparisons with Varied Optical
Thicknesses

This section shows plots of the HSM and UMC solutions for the same number of particles.
I run calculations for the LCP problem, as well as three additional problems, which are just
the LCP problem but with different optical thickness ratios. The optical thickness ratio of
the materials from the LCP problem definition in [39] are,

σthick
t

σthin
t

=
200

0.2
= 1000 , (5.25)

where “thin” denotes the pipe material and “thick” denotes the material surrounding the
pipe. In addition to running with the original optical thickness ratio, I run with new values
of σthick

t and σthin
t that provide optical thickness ratios of 2, 10, and 100. The opacities for

the four problems are listed in table 5.1. All of the entries in table 5.1 have dimensions of
inverse centimeters.

I ran HSM and UMC calculations for the 2, 10, 100, and 1000 optical thickness ratio
LCP problems using 1 million, 4 million, and 16 million particles. Thus, I ran the following
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24 calculations,

{HSM, UMC}︸ ︷︷ ︸
2 methods

×{1e6, 4e6, 16e6}︸ ︷︷ ︸
3 particle counts

×{2, 10, 100, 1000}︸ ︷︷ ︸
4 problem definitions

,

where “1e6” is 1 million, “4e6” is 4 million, and “16e6” is 16 million.
Observe from Fig. 5.9 that everything in the LCP problem definition—geometry, mate-

rials, boundary conditions—is symmetric about the x-axis. The HSM and UMC solutions
preserve the symmetry up to the Monte Carlo noise level, which allows us to compare the
two solutions for each problem by cutting the pseudocolor plots in half along the line y = 0.
In Figs. 5.13 to 5.16, I show HSM on top of UMC.

Thick Thin Ratio

σa 1 0.5 2
σs 1 0.5 2
σt 2 1 2

(a) σthick
t /σthin

t = 2

Thick Thin Ratio

σa 0.00001 0.001 0.01
σs 1.99999 0.199 10.05
σt 2 0.2 10

(b) σthick
t /σthin

t = 10

Thick Thin Ratio

σa 0.0001 0.001 0.1
σs 19.9999 0.199 100.5
σt 20 0.2 100

(c) σthick
t /σthin

t = 100

Thick Thin Ratio

σa 0.001 0.001 1
σs 199.999 0.199 1005
σt 200 0.2 1000

(d) σthick
t /σthin

t = 1000

Table 5.1: Material data for four distinct problems, each with a unique optical thickness
ratio, σthick

t /σthin
t .
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(a)

(b)

(c)

Figure 5.13: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 2.
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(a)

(b)

(c)

Figure 5.14: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 10.
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(a)

(b)

(c)

Figure 5.15: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 100.
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(a)

(b)

(c)

Figure 5.16: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 1000.
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Four comments regarding the results in Figs. 5.13 to 5.16 are:

1. The σthick
t /σthin

t = 2 results in Fig. 5.13 show excellent agreement between HSM and
UMC for all 3 particle counts with no visible noise in any of the solutions. The radiation
exhibits minimal propagation.

2. The σthick
t /σthin

t = 10 results in Fig. 5.14 show very good agreement between HSM and
UMC for all 3 particle counts. The HSM solution has visible noise at 1e6 particles that
becomes less visible at 4e6 and is indiscernible at 16e6 particles. The UMC solutions
have no visible noise. The radiation propagates to the front wall.

3. The σthick
t /σthin

t = 100 results in Fig. 5.15 show some agreement between HSM and
UMC which increases with particle count. The HSM solution has significant noise at
1e6 particles. The noise is less severe at 4e6 and 16e6 particles, but remains visible.
The UMC solutions have no visible noise. The radiation propagates to the back wall.

4. The σthick
t /σthin

t = 1000 results in Fig. 5.16 show significant differences between HSM
and UMC, though the disagreement decreases with particle count. The HSM solution
at 1e6 is dark except for a single boundary element with an non-physical solution
of approximately 1019, indicating that the iteration diverged. The HSM solutions
at 4e6 and 16e6 particles look reasonable, but very noisy. The UMC solution has
significant noise at 1e6 particles, less at 4e6, and indiscernible noise at 16e6 particles.
The radiation propagates beyond the back wall.

The HSM solution has much more noise than UMC for an equivalent number of simulation
particles when the material is optically thick. The issue causing the noise is my choice of
estimators for the SMM data: T̂ is noisy in optically-thicker materials because Var[T̂] is
O(1/ϵ), as I derived in section 3.6 and showed in Fig. 5.8.

5.3.2 Confirming Avoidance of Noise Amplification

This section is dedicated to a brief examination of the noise issue in the HSM solution
to the LCP problem, in order to confirm that the mixed finite element solve of the SMM
system does not amplify the Monte Carlo noise in the SMM data estimators T̂ and β̂. The
calculations in this section use HSM to solve the LCP problem as defined in [39], for which
σthick
t /σthin

t = 1000. I use 500 million particles, which is a factor of 16 fewer particles than
the 8 billion particles that I used to produce the visually-noiseless HSM solution in Fig. 5.12
(a). I plot intermediate solutions during the HSM calculation before convergence in order to
show when the noise appears and how it changes during the HSM iteration.

Fig. 5.17 shows the logic in Algorithm 3 for computing the HSM solution alongside
pseudocolor plots of the unscattered estimator ϕ̂(0), the estimator first iterate ϕ̂(1), and
the estimator at convergence ϕ̂(12). Fig. 5.18 shows the unscattered estimator ϕ̂(0) and the
estimator first iterate ϕ̂(1) again, but with the second moment system solution iterate φ(1)

interposed between them.
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(a)

(b)

(c)

Figure 5.17: The HSM estimator ϕ̂ for the LCP problem before iterating (a), after the first
cycle (b), and at convergence (c), where 12 cycles were required to converge HSM using 500
million particles.
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(a)

(b)

(c)

Figure 5.18: The HSM estimator ϕ̂ for the LCP problem before iterating (a), φ in the first
cycle (b), and ϕ̂ after cycle 1 (c). The pseudocolor plots in (a) and (c) are identical to the
pseudocolor plots in Fig. 5.17 (a) and (b), respectively.
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Three observations about Figs. 5.17 and 5.18 are:

i. The unscattered estimator ϕ̂(0), plotted in Fig. 5.17 (a) and Fig. 5.18 (a), illuminates
the pipe so weakly that the front wall is not even visible. Consequently, a substantial
amount of work in the HSM algorithm is left to the iteration of the scattering source.
Additionally, the unscattered estimator ϕ̂(0) does not show the noise issue.

ii. The noise issue is apparent in both ϕ̂(1) and ϕ̂(12), which are plotted in Fig. 5.17 (b) and
(c), respectively. However, the noise issue does not appear to worsen between cycle 1
and 12, because ϕ̂(12) appears no more noisy than ϕ̂(1).

iii. The second moment solution iterate φ(1), plotted in Fig. 5.18 (b), does not show the noise
issue. Thus, the noise problem results from the transport of the scattering source, not
the moment system solve. Avoiding differentiation of the correction tensor by solving
the first order moment system using a FEM to offload the derivative appears to be
effective for the prevention of noise amplification.

I conclude that the noise issue is a result of the calculation and transport of the scattering
source. One final observation is that the total weight of the simulation particles before
iterating is only 0.5, whereas it is about 1,400 during iteration, plus or minus a few percent
because the weight varies by a few percent over the iteration.

Recall from section 3.6 that the variance of my T̂ estimator of the SMM transport
correction tensor is O(1/ϵ) in the TDL, as supported by the empirical result in Fig. 5.8. I
derived R̂ in section 3.7, which is an alternative estimator for T that is O(ϵ) in the TDL.
I derived another alternative estimator for T, called the deviatoric estimator, which is also
O(ϵ) in the TDL (see section 3.8). In Chapter 6, I show that computing the deviatoric
estimator T̂new instead of T̂ fixes the noise issue.

5.4 Linearized Lattice Problem

In section 5.3, I presented calculation results for a classic problem in applied physics, one
which has been used many times in the past quarter century to demonstrate the efficacy of
different numerical methods for solving the equations of thermal radiative transfer. Here, I
do the same for a much newer problem, proposed less than two years ago, which attempts
to combine the good features of several classic problems into one. The new problem first
appeared in a LLNL technical report by Brunner [94]. The author describes radiation flow
through a lattice.

In Brunner’s problem description, an intense boundary source of radiation shines on one
face of a lattice composed of optically-thick iron and optically-thin foam with a central mass
of hot iron which is also radiating. Radiation flows preferentially through the foam, and then
leaves the problem through vacuum boundaries. The radiative heating process in Brunner’s
lattice occurs due to the physical processes which I described in Chapter 1, and Fig. 1.1 lists
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some example processes by which we assume that the radiation in the lattice problem gets
absorbed and re-emitted.

Brunner’s lattice is a time-dependent problem. I solve a steady-state simplification which
I call the Linearized Lattice (LL). I make the foam 1000 times optically-thinner than the
iron. Fig. 5.19 depicts the geometry, material data, and boundary conditions for the LL
problem. The boundary source is isotropic on the inflow hemisphere with magnitude,

ψ̄ =

{
1 x = 0 ,

0 otherwise .
(5.26)

Finally, there is an isotropic volume source in the central iron cube with magnitude,

q =

{
1/2 3 ≤ x ≤ 4 = 0 and 3 ≤ y ≤ 4 ,

0 otherwise .
(5.27)

I use a mesh composed of squares of equal sizes. The minimal number of uniform squares
required to tessellate the LL geometry such that all material interfaces are on element bound-
aries is 7 × 7. Fig. 5.20 shows the aforementioned 49-element mesh and how each element has
material with single-valued properties, because each element contains either optically-thin
foam or optically-thick iron, but not both. Fig. 5.21 shows the mesh after splitting each ele-
ment into four squares of equal size to create a new mesh with 14 × 14 elements. Repeating
this refinement operation four more times results in a 224 × 224 mesh, with 50,176 square
elements, which is the mesh that I use in my calculations. I compute the angle integrated
intensity. I set the convergence threshold η in the convergence criterion Eq. (4.1) to 10−3.

Here, just like in Fig. 5.12 for LCP, I carried out three calculations. I computed the HSM
solution using 8 billion simulation particles, I computed the UMC using 16 million simulation
particles, and I computed the radiation diffusion approximation solution. Fig. 5.22 shows
pseudocolor plots of the solutions.
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Figure 5.19: Linearized Lattice geometry, material data, and boundary conditions.
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Figure 5.20: Uniform mesh of the Linearized Lattice geometry, |T | = 7× 7 = 49.

Figure 5.21: Refined mesh, |T | = 14× 14 = 196.
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(a) (b)

(c)

Figure 5.22: HSM (a), UMC (b), and diffusion (c) solutions for the linearized lattice.
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Four comments regarding the solutions in Fig. 5.22 are:

1. My HSM and UMC solutions appear to agree within 8.5%, as judged by the ratio
of the colorbar maximum values. Both show bright illumination on the edges of the
iron squares that are facing the boundary and volume sources, and dark shadows on
the edges facing away from the sources. However, the areas of highest intensity and
lowest intensity are noticeably brighter and darker, respectively, in the UMC solution
compared to the HSM solution.

2. The radiation diffusion approximation gives a solution with a substantial approxima-
tion error, in this case 23%, as judged by the ratio of the colorbar maximum values
(assuming that the UMC solution is the correct solution). The radiation diffusion
approximation tends to over-illuminate regions of low intensity (dark regions in the
UMC solution) and under-illuminate regions of high intensity (bright regions in the
UMC solution). This behavior gives the impression that the radiation is “diffusing”
through the iron rather than “transporting” around the iron via the foam.

3. Running fewer than 8 billion particles in the HSM calculation, or fewer than 16 mil-
lion particles in the UMC calculation, causes visible noise to appear in the solution.
The factor of 500 more particles required for the HSM calculation is an undesirable
consequence of the Var[ϕ̂] = O(1/ϵ) result that I derived in section 3.6, and for which
I provided supporting empirical evidence in Fig. 5.8.

4. The similarity between the LL results in Fig. 5.22 and the LCP results in Fig. 5.12
suggests that the features of the HSM, UMC, and radiation diffusion approximation
solutions are independent of the geometry, because these features are present in both a
pipe and a lattice. Consequently, these features appear to be intrinsic to the methods
themselves.

5.4.1 Particle-Equivalent Comparisons with Varied Optical
Thicknesses

The purpose of this section is to use the LL problem to compare the quality of the HSM
and UMC solutions using the same number of particles, just as we did in section 5.3.1
using the LCP problem. Figs. 5.23 to 5.26 show plots of the HSM and UMC solutions for
σthick
t /σthin

t = 2, 10, 100, 1000 (see table 5.1). I ran HSM and UMC calculations for the 2, 10,
100, and 1000 optical thickness ratio LL problems using 1 million, 4 million, and 16 million
particles. Thus, I ran the following 24 calculations,

{HSM, UMC}︸ ︷︷ ︸
2 methods

×{1e6, 4e6, 16e6}︸ ︷︷ ︸
3 particle counts

×{2, 10, 100, 1000}︸ ︷︷ ︸
4 problem definitions

,

where “1e6” is 1 million, “4e6” is 4 million, and “16e6” is 16 million. As in section 5.3.1, I
have divided the pseudocolor plots in half, this time along the line y = 3.5.
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(a) (b)

(c)

Figure 5.23: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 2.
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(a) (b)

(c)

Figure 5.24: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 10.



148

(a) (b)

(c)

Figure 5.25: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 100.
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(a) (b)

(c)

Figure 5.26: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with HSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 1000.
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Four comments regarding the results in Figs. 5.23 to 5.26 are:

1. The σthick
t /σthin

t = 2 results in Fig. 5.23 show excellent agreement between HSM and
UMC for all 3 particle counts. Both HSM and UMC have nearly identical amounts
of visible noise at 1e6 particles that becomes less visible at 4e6 and is indiscernible at
16e6 particles. The radiation exhibits minimal propagation.

2. The σthick
t /σthin

t = 10 results in Fig. 5.24 show good agreement between HSM and
UMC for all 3 particle counts. At 1e6 and 4e6 particles, the HSM and UMC solutions
both exhibit visible noise, though the HSM noise is much more noticeable. The noise
remains visible at 16e6 particles in the HSM solution, but not in the UMC solution.
The radiation propagates further.

3. The σthick
t /σthin

t = 100 results in Fig. 5.25 show some agreement between HSM and
UMC which increases with particle count. The HSM solution has significant noise at
1e6 particles. The noise is less severe at 4e6 and 16e6 particles, but remains visible.
The UMC solution has visible noise at 1e6 particles, barely noticeable noise at 4e6
particles, and indiscernible at 16e6 particles. The radiation propagation in Fig. 5.25
appears similar to Fig. 5.24, but with intensities that show significantly higher contrast
(brighter brights and darker darks).

4. The σthick
t /σthin

t = 1000 results in Fig. 5.26 show significant differences between HSM
and UMC, though the disagreement decreases with particle count. The HSM solution
at 1e6 is dark except for a small collection of neighboring elements as well as elements
along streak lines and with a colorbar maximum value that is orders of magnitude
too large, all of which is unphysical and indicates that the iteration diverged. The
HSM solutions at 4e6 and 16e6 particles look reasonable, but very noisy. The UMC
solution has noticeable noise at 1e6 particles, less at 4e6, and indiscernible noise at
16e6 particles. The radiation propagation in Fig. 5.26 appears similar to Fig. 5.25,
but with intensities that show noticeably higher contrast (brighter brights and darker
darks).

As we saw in section 5.3.1 Particle-Equivalent Comparisons with Varied Optical Thick-
nesses for the LCP problem, the HSM solution has much more noise than UMC for an
equivalent number of simulation particles when the material is optically thick. This issue is
caused by my choice of estimators for the SMM data: T̂ is noisy in optically-thicker materials
because Var[T̂] is O(1/ϵ), as I derived in section 3.6 and showed in Fig. 5.8.

5.4.2 Confirming Avoidance of Noise Amplification

The purpose of this section is to show that the results observed with the LCP problem in
section 5.3.2 Confirming Avoidance of Noise Amplification also hold for the LL problem.
Specifically, the mixed finite element solve of the SMM system does not amplify the Monte
Carlo noise in the SMM data estimators T̂ and β̂. The calculations in this section use HSM
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to solve the LL problem with σthick
t /σthin

t = 1000. I use 500 million particles, which is a factor
of 16 fewer particles than the 8 billion particles that I used to produce the visually-noiseless
HSM solution in Fig. 5.22 (a). I plot intermediate solutions during the HSM calculation
before convergence in order to show when the noise appears and how it changes during the
HSM iteration.

Fig. 5.27 shows the logic in Algorithm 3 for computing the HSM solution alongside
pseudocolor plots of the unscattered estimator ϕ̂(0), the estimator first iterate ϕ̂(1), and
the estimator at convergence ϕ̂(13). Fig. 5.28 shows the unscattered estimator ϕ̂(0) and the
estimator first iterate ϕ̂(1) again, but with the second moment system solution iterate φ(1)

interposed between them.
Three observations about Figs. 5.27 and 5.28 are:

i. The unscattered estimator ϕ̂(0), plotted in Fig. 5.27 (a) and Fig. 5.28 (a), illuminates
the lattice so weakly that the iron squares look black, meaning that the intensity in
the iron squares is zero or near-zero. Consequently, the work required to compute the
illlumination of the iron squares in the HSM solve of the LL problem is left to the
iteration of the scattering source. Additionally, the unscattered estimator ϕ̂(0) does not
show the noise issue.

ii. The noise issue is apparent in both ϕ̂(1) and ϕ̂(13), which are plotted in Fig. 5.27 (b) and
(c), respectively. However, the noise issue does not appear to worsen between cycle 1
and 13, because ϕ̂(13) appears unsubstantially noisier than ϕ̂(1).

iii. The second moment solution iterate φ(1), plotted in Fig. 5.28 (b), does not show the noise
issue. Thus, the noise problem results from the transport of the scattering source, not
the moment system solve. Avoiding differentiation of the correction tensor by solving
the first order moment system using a FEM to offload the derivative appears to be
effective for the prevention of noise amplification.

I conclude that the noise issue is a result of the calculation and transport of the scattering
source. One final observation is that the total weight of the simulation particles before
iterating is about 28, whereas it is about 6,800 during iteration, plus or minus a few percent
because the weight varies by a few percent over the iteration.

Recall from section 3.6 that the variance of my T̂ estimator of the SMM transport
correction tensor is O(1/ϵ) in the TDL, as supported by the empirical result in Fig. 5.8. I
derived R̂ in section 3.7, which is an alternative estimator for T that is O(ϵ) in the TDL.
I derived another alternative estimator for T, called the deviatoric estimator, which is also
O(ϵ) in the TDL (see section 3.8). In Chapter 6, I show that computing the deviatoric
estimator T̂new instead of T̂ fixes the noise issue.
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(a)

(b)

(c)

Figure 5.27: The HSM estimator ϕ̂ for the LL problem before iterating (a), after the first
cycle (b), and at convergence (c), where 13 cycles were required to converge HSM using 500
million particles.
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(a)

(b)

(c)

Figure 5.28: The HSM estimator ϕ̂ for the LL problem before iterating (a), φ in the first
cycle (b), and ϕ̂ after cycle 1 (c). The pseudocolor plots in (a) and (c) are identical to the
pseudocolor plots in Fig. 5.27 (a) and (b), respectively.
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Chapter 6

Deviatoric Numerical Results

In this chapter, I use the deviatoric estimator to solve the same problems that I solved in
Chapter 5. To differentiate my HSM method, which utilizes the SMM data estimators T̂
and β̂, from the version that employs the deviatoric estimators T̂new and β̂new, I refer to
the latter as deviatoric hybrid second moment (DHSM). Where the acronym HSM appeared
in the plots and figure captions in Chapter 5, the acronym DHSM is used in the plots and
figure captions in this chapter.

The purpose of this chapter is to demonstrate that DHSM fixes the noise issue observed
with HSM in Chapter 5. My calculations provide numerical evidence that the DHSM estima-
tors require far fewer particles to converge than the HSM estimators require. The numerical
evidence aligns with the results presented in Chapter 3, where I demonstrated that, in the
TDL, the variance of the HSM estimator is O(1/ϵ), while the variance of the DHSM estima-
tor is O(ϵ). In the TDL, ϵ << 1/ϵ because ϵ ∈ (0, 1] and ϵ→ 0 is the asymptotic limit that
characterizes the TDL (see section 1.3.6 for a brief description of the TDL).

In section 3.8.2 Implementation Details of Deviatoric Estimator, I explain that the angle
integrated intensity ϕ does not have a well-defined derivative for all problems. However, this
is not an issue in section 6.1 and section 6.2, where the smoothness of the source functions q
and ψ̄, combined with a homogeneous medium, ensures that ∇ϕ is well-defined everywhere.
The issue caused by the non-differentiability of ϕ appears in sections 6.3 and 6.4, where we
solve problems for which ∇ϕ is not well-defined. Specifically, ϕ is not differentiable on the
interface between the optically-thick and optically-thin materials.

The non-differentiability of ϕ invalidates my derivation in section 3.8.1 Derivation of
Deviatoric Estimator, where I substituted ψ = φ/(4π)+ψ̃ into the linear transport equation.
Thus, in sections 6.3 and 6.4, the DHSM method computes a solution to a linear transport
equation for which ∇ϕ is well-defined, which differs from the actual equation that we want
to solve. The effect of this error is most easily seen along the material interface, where the
DHSM solution is incorrect. In section 3.8.2, I suggest a way to fix the issue. My suggestion
involves minimizing the Dirichlet energy to make the strong derivative of φ well-defined,
though I have yet to implement my suggestion.
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6.1 Method of Manufactured Solutions Problem

I verify that my DHSM method solves the linear transport equation correctly by solving the
same MMS problem that I solved in section 5.1 using the HSM method. The MMS solution
ψMMS is Eq. (5.1). The MMS problem has nonzero SMM data T ̸= 0 and β ̸= 0. It also has
nonzero inflow ψ̄ ̸= 0, and so Jin ̸= 0. Thus, the MMS problem verifies my implementation
of the coupling of the deterministic and Monte Carlo components of the hybrid method, as
well as my implementation of the boundary conditions.

I compare my numerical DHSM solution with ϕ̄MMS(x1, x2, y1, y2), which is the element-
averaged angle integrated MMS solution defined by Eq. (5.4). I fix the number of elements
and scale up the number of particles in successive calculations by a factor of four each time.
I fix the number of particles and increase the mesh resolution by scaling down the element
width by a factor of two each time. I compute the error of my numerical DHSM solution
with respect to the MMS solution using Eqs. (5.14) and (5.15) for the latter and the former
cases, respectively. I hypothesize that the error of the DHSM solution is O(h) + O(N−1/2),
which is the error that I hypothesized for HSM, based on arguments that I described in
section 4.1. As before, h is the element width, and N is the number of MC particles.

Fig. 6.1 shows the results of these studies. The slight degradation in convergence at the
412 and 413 particle counts, appearing as liftoff above the dashed curve at the bottom-right
of Fig. 6.1a, is expected behavior because I distribute more and more MC particles in a mesh
with a fixed number of elements under sample size refinement. I confirmed that this was the
case by running on a coarser mesh and observing earlier liftoff, as well as running on a finer
mesh and observing delayed liftoff.

The very slight degradation in convergence below the hypothesized linear rate in h,
appearing as liftoff above the dashed curve at the bottom-left of Fig. 6.1b, is also expected
behavior, because I distribute a fixed number of MC particles across more and more elements
under mesh refinement. I confirmed that this was the case by running fewer MC particles
and observing earlier liftoff, as well as running more MC particles and observing delayed
liftoff.

Interestingly, the HSM convergence under sample refinement, plotted in Fig. 5.4a, is
nearly perfect, whereas the DHSM convergence, plotted in Fig. 6.1b, is degraded. I believe
this is due to the constant on the O(h) term in the error, which I suspect is larger in DHSM
compared to HSM. I attribute this larger constant to the evaluation of φ on ∂D, which is
required in DHSM but not in HSM1. Evaluating φ on ∂D introduces another place where
the spatial discretization error caused by the mesh contributes to the O(h) error term.

Another interesting difference between the HSM and DHSM convergence appears under
mesh refinement. The HSM convergence, plotted in Fig. 5.4b, is nearly perfect until the
finest mesh resolution, whereas the DHSM convergence is very slightly degraded, beginning
with the mesh for which the element width is four times greater than the finest mesh. I

1We need φ(x) for x ∈ ∂D in the Monte Carlo component of the DHSM method to integrate the variable
boundary source, whereas the HSM method does not have a variable boundary source.
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believe this reflects the influence of the variable boundary source, which requires the DHSM
particle memory to be shared between the variable volume source and the variable boundary
source during the DHSM iteration. In practice, I split the memory evenly between the two
sources, which means that I use twice as many particles to integrate the variable volume
source in my HSM calculations than in my DHSM calculations.

(a) Error as number of MC particles increases. (b) Error as element width decreases.

Figure 6.1: Error of DHSM iterate ϕ̂
(i)
new upon convergence.

6.2 Thick Diffusion Limit Problem

When I presented HSM results for the TDL in section 5.2, I mentioned that the thick
diffusion limit is a challenging regime for transport methods. In Chapter 1, I explained why
deterministic transport methods such as SI suffer from arbitrarily slow convergence in the
TDL, and how Monte Carlo transport methods suffer from arbitrarily long runtimes due to
extremely long MC particle histories in the TDL. The TDL also proved difficult for my HSM
method, which we observed to have an estimator variance of O(1/ϵ) in the TDL. A quantity
which scales as O(1/ϵ) is arbitrarily large because ϵ→ 0 in the TDL. An unbounded variance
is not a desirable quality for any numerical method.

The superiority of the deviatoric estimator comes from its O(ϵ) variance in the TDL. In
section 3.8.3, we derived the O(ϵ) variance result. In this section, I give supporting numerical
evidence which convincingly demonstrates the superiority of the deviatoric estimator for
single-material transport problems in the TDL.

First, I calculate the DHSM solution for the four different optical-thickness parameter
values ϵ = 10−1, 10−2, 10−3, and 10−4. Fig. 6.2 shows that the DHSM solution appears to
converge to the diffusion limit solution as ϵ→ 0, as expected, because the lineouts appear to
approach an equilibrium solution in the sense that successive lineouts differ less for smaller
ϵ.
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The DHSM solution in Fig. 6.2 is nearly perfect. The only visible imperfection is at ϵ =
10−1, where ϕ̂new(x1) for 0.4 < x1 < 0.5 is just barely larger than ϕ̂new(x2) for 0.5 < x2 < 0.6.
These function values should be equal, as they are for smaller ϵ, and I observe visual equality
when I increase the number of particles. The HSM solution in Fig. 5.6 is less perfect. It is
visibly apparent that |ϕ̂(x1)− ϕ̂(x2)| < |ϕ̂new(x1)− ϕ̂new(x2)| for ϵ = 10−1 as well as smaller
values of ϵ, though the differences in the ϕ̂ values also go to zero as I increase the number of
particles.

Figure 6.2: Lineouts at y = 0.5 of DHSM angle integrated element averaged (AIEA) intensity
for calculations using four different values of the TDL scaling parameter ϵ.

The runtime of DHSM is O(1) in the TDL, as can be seen in Fig. 6.3. The DHSM method
runtime exceeds the HSM method runtime when ϵ = 1, as can be seen by observing that the
height of the rightmost cross in Fig. 6.3 exceeds the height of the rightmost cross in Fig. 5.7.
This reflects the fact that DHSM requires more work than HSM, as it has an additional
source—the variable boundary source—that must be sampled every cycle of the iteration.
The DHSM method also needs derivatives and boundary values of φ, which HSM does not.
However, the additional expense of DHSM is inconsequential in the TDL, where we see that
the DHSM and HSM runtimes are equally small, as judged by the commensurate heights of
the leftmost crosses in Figs. 5.7 and 6.3.

The metric for which DHSM significantly outperforms HSM is the variance. I estimate the
variance of ϕ̂new in a single element by computing the squared difference of 600 realizations
of ϕ̂new with the average of the 600 realizations, as in Eq. (5.22) (replace ϕ̂ with ϕ̂new in this
equation). I repeat this procedure for five ϵ values: 10−1, 10−2, 10−3, 10−4, and 10−5. Fig. 6.4
shows empirical agreement of Var[ϕ̂new] with the O(ϵ) result derived in section 3.8.3. Most
importantly, Var[ϕ̂new] ≪ Var[ϕ̂], as can be seen by comparing Figs. 5.8 and 6.4. Finally,
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substituting the O(1) runtime and O(ϵ) variance into Eq. (5.21) gives a FOM for DHSM of
O(1/ϵ), which is significantly better than the O(ϵ) HSM FOM.

Figure 6.3: Runtime of unaccelerated Monte Carlo (UMC) and deviatoric hybrid second
moment (DHSM) methods for calculations with different values of the TDL scaling parameter
ϵ. The ϵ values are 20, 2−1, 2−2, . . . , 2−13.

Figure 6.4: Estimate of the variance of the DHSM angle integrated element averaged inten-
sity.
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6.3 Linearized Crooked Pipe Problem

In section 5.3, I introduced the Crooked Pipe (CP) problem, which is commonly used to
compare numerical methods for TRT. The CP problem definition comes from Graziani and
LeBlanc [93]. It is an unsteady TRT problem. The Linearized Crooked Pipe (LCP) is a
steady-state simplification of the CP problem that is equivalent to calculating one very large
timestep of a backward Euler time integrator. The definition for the LCP problem that I solve
comes from [39]. The LCP has a uniform volume source of q = 10−7 everywhere in space,
and an inflow source on the left boundary that is described by Eq. (5.24). Fig. 5.9 shows
the LCP geometry, material data, and boundary conditions. Figs. 5.10 and 5.11 illustrate
my meshing strategy. In this approach, I use the minimum number of equally-sized squares
to tesselate the LCP geometry, ensuring that each square contains either optically-thick or
optically-thin material, but not both. The result is a mesh with 14 × 8 = 112 elements,
which I refine four times to produce the 224 × 128 mesh containing 28,672 equally-sized
square elements.

In section 5.3, I ran HSM using 8 billion simulation particles, and plotted it alongside an
unaccelerated Monte Carlo (UMC) solution calculated using 16 million simulation particles,
and a radiation diffusion solution. Fig. 5.12 shows those results. Here, I replace the HSM
solution plot with a plot of the DHSM solution using only 64 million particles. Fig. 6.5
demonstrates that 64 million particles were sufficient to eliminate any visibly-discernible
noise from the DHSM solution. This represents over 100 times fewer particles than were
required to produce the visibly-noiseless HSM solution shown in Fig. 5.12.

One significant difference between the HSM and DHSM calculations, apart from the
substantial reduction in the number of simulation particles required by the DHSM method,
is that the HSM solution closely resembles the UMC solution, whereas the DHSM solution
appears distinctly different. That is, Fig. 5.12 (a) and (b) are very similar, whereas Fig. 6.5
(a) and (b) are not. This is a bad result for the DHSM method, because I consider the UMC
solution in Figs. 5.12 and 6.5 (b) to be the reference solution2. The disagreement of DHSM
and UMC is most pronounced at the interface between the materials, where the DHSM
solution is insufficiently bright or insufficiently dark relative to the UMC solution on the
front and back walls, respectively. The DHSM solution also over-illuminates the right half
of the pipe, and under-illuminated the left half. I believe the DHSM solution is incorrect,
but not irreparable.

The issue is that the LCP solution has an undefined derivative at the interface between
the two materials. In section 3.8.2, I described how this invalidates the substitution of
ψ = φ/(4π) + ψ̃ into the transport Eq. (3.39a), and I suggested how to fix the issue. My
suggestion involves replacing φ with some arbitrary function φ̇ for which ∇φ̇ is well-defined.
I also describe how solving a minimization problem could provide differentiability while
preserving the crucial property that φ− φ̇ must be O(1/σt), as illustrated in Fig. 3.8. I have

2Not only does UMC involve fewer approximations than the hybrid methods, but my UMC solution
closely resembles the SN solution in Fig 9 (b) in Olivier et al. [39].
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not yet implemented my suggestion.

6.3.1 Particle-Equivalent Comparisons with Varied Optical
Thicknesses

Despite an improvement of two orders of magnitude in the number of particles required for
the DHSM solution to be visually noiseless, 64 million is still four times more particles than
the 16 million particles required by UMC. In this section, I run the same problems from
section 5.3.1 using DHSM instead of HSM. I vary the opacities in the LCP so that the ratio
σthick
t /σthin

t is equal to 2, 10, 100, and 1000. The highest ratio corresponds to the opacity
values in the LCP problem definition from Olivier et al. [39]. The other three values are
choices that I made to investigate the behavior of my hybrid method. Table 5.1 shows the
complete material data for the four optical-thickness ratios.

Figs. 6.6 to 6.9 show pseudocolor plots of the results of 24 calculations. Each of the
four figures has three subfigures with results for calculations using (a) one million, (b) four
million, and (c) sixteen million simulation particles. Each subfigure contains two plots. The
top plot is DHSM and the bottom plot is UMC. I dedicate one paragraph of comments on
each of the four figures.

1) Comparing Fig. 6.6 to Fig. 5.13, specifically the top half of the (a) subfigures, DHSM
is noticeably more noisy than HSM. This indicates that HSM may be more efficient for
optically-thin calculations. The DHSM solution also shows less agreement with the UMC so-
lution than the HSM solution, which is likely related to the aforementioned non-differentiability
issue on the material interface. Finally, the DHSM solution violates the non-negativity prop-
erty of the transport Eq. (1.13a).

2) Comparing Fig. 6.7 to Fig. 5.14, specifically the top half of the (a) subfigures, DHSM
and HSM have approximately commensurate amounts of visible noise. Interestingly, the
DHSM noise appears to be lower frequency than the HSM noise, in the sense that the DHSM
noise manifests as unphysical streaking in the solution, whereas the HSM noise presents as
unphysical spotting in the solution.

3) Comparing Fig. 6.8 to Fig. 5.15, specifically the top half of the (a) subfigures, DHSM is
less noisy than HSM. Increasing the number of HSM particles by a factor of 16 dramatically
reduces the noise, though the resulting amount of noise is visually similar than the amount
of noise in the DHSM calculation with 16 times fewer simulation particles.

4) A comparison of Fig. 6.9 to Fig. 5.16 demonstrates the most dramatic difference
between the DHSM and HSM method, which occurs due to the regions of very optically-
thick material in the problem. Not only do the HSM and DHSM solutions have visible
noise, but the UMC solution does as well. Inspecting the (a) subfigures reveals that DHSM
converges to a reasonable solution at only one million simulation particles, whereas the HSM
iteration diverges, resulting in an unphysical solution characterized by a single bright spot.
The brightness of the unphysical bright spot is about twenty orders of magnitude too bright.
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(a)

(b)

(c)

Figure 6.5: DHSM (a), UMC (b), and diffusion (c) solutions for the linearized crooked pipe.
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(a)

(b)

(c)

Figure 6.6: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 2.
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(a)

(b)

(c)

Figure 6.7: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 10.
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(a)

(b)

(c)

Figure 6.8: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 100.
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(a)

(b)

(c)

Figure 6.9: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of a,b,c)
and UMC (bottom of a,b,c) for the LCP problem with σthick

t /σthin
t = 1000.
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6.3.2 Confirming Avoidance of Noise Amplification

This section shows that the mixed FEM discretization of the SMM successfully avoids am-
plifying the noise in the SMM data for the LCP problem using the DHSM method. In
section 5.3.2, I demonstrated amplification avoidance in the HSM method by plotting dif-
ferent HSM iterates for a calculation using 500 million particles. I do the same here with
DHSM, but using only 500 thousand particles3. The calculations in this section use DHSM
to solve the LCP problem as defined in [39], for which σthick

t /σthin
t = 1000. I plot unconverged

quantities to show when the noise appears and how it changes during the DHSM iteration.
Below, I present plots of DHSM iterates alongside Algorithm 3, which is the HSM algo-

rithm. The DHSM logic may be described using Algorithm 3 with the following changes,

• The sm() function must be modified to additionally compute and return the gradient
of φ along with φ on the domain boundary. The new code in Algorithm 3 would be:

11: φ(i),∇φ(i), φ
(i)
Γb
← sm(Q0,Q1, T̂

(i−1)
, β̂(i−1))

• The mc() function must be modified to i) sample the DHSM variable volume source
instead of the HSM variable volume source, and ii) additionally sample the variable
boundary source4. The new code in Algorithm 3 would be:

12: ϕ̂temp, T̂temp, β̂temp ← mc(φ(i),∇φ(i), φ
(i)
Γb
, scattering events)

• Finally, the return value must be modified because the DHSM estimator for the angle
integrated intensity Eq. (1.17) is ϕ̂new, which is defined by Eq. (3.195a). The new code
in Algorithm 3 would be:

18: return ϕ̂(i) + φ

Fig. 6.10 shows Algorithm 3 alongside pseudocolor plots of the unscattered estimator
ϕ̂
(0)
new, the estimator first iterate ϕ̂

(1)
new, and the estimator at convergence ϕ̂

(6)
new. Fig. 6.11 shows

the unscattered estimator ϕ̂
(0)
new and the estimator first iterate ϕ̂

(1)
new again, but with the second

moment system solution iterate φ(1) interposed between them.
Fig. 6.10 (a) shows that the unscattered solution ϕ̂

(0)
new is localized compared to the con-

verged solution ϕ̂
(6)
new in (c). Additionally, the noise appears to be preserved (neither damp-

ened nor amplified) during the iteration, because the amount of noise in the converged iterate

ϕ̂
(6)
new, shown in (c), is visibly similar to that of the first iterate ϕ̂

(1)
new, shown in (b).

The noise in the unscattered solution ϕ̂
(0)
new is not amplified by the SMM solve, but rather

slightly dampened, as judged by comparing Fig. 6.11 (a) to (b). Thus, the noise in the
DHSM solution results from the Monte Carlo transport solve, not the moment system solve.
Avoiding differentiation of the correction tensor by solving the first order moment system
using a FEM to offload the derivative appears to be effective for the prevention of noise
amplification in the DHSM method.

3I use a factor of 1000 fewer particles so that I can see the noise in the DHSM solution.
4Table 3.4 lists the variable sources for HSM and DHSM.
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(a)

(b)

(c)

Figure 6.10: The DHSM estimator ϕ̂new for the LCP problem before iterating (a), after the
first cycle (b), and at convergence (c), where 6 cycles were required to converge DHSM using
500 thousand particles.
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(a)

(b)

(c)

Figure 6.11: The DHSM estimator ϕ̂new for the LCP problem before iterating (a), φ in the
first cycle (b), and ϕ̂new after cycle 1 (c). The pseudocolor plots in (a) and (c) are identical
to the pseudocolor plots in Fig. 6.10 (a) and (b), respectively.
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6.4 Linearized Lattice Problem

In section 5.4, I introduced the Lattice problem, which is a new problem for comparing
numerical methods for TRT. The Lattice problem definition comes from Brunner [94]. It is
an unsteady TRT problem. I solve a steady-state problem inspired by the Lattice problem,
which I call the Linearized Lattice (LL). Fig. 5.19 shows the LL geometry, material data,
and boundary conditions. The opacities are the same as in the LCP, but the geometry is a
lattice instead of a pipe, and the inflow boundary extends along the entire left boundary of
the domain, instead of just a subset of the left boundary. Additionally, LL has a fixed volume
source that is uniformly distributed over a 1-cm-by-1-cm square at the center of the lattice.
The boundary source and volume source functions are defined by Eqs. (5.26) and (5.27),
respectively. My meshing strategy is the same as for the LCP: tesselate the LL geometry
using the minimum number of equally-sized squares such that each square contains either
optically-thick or optically-thin material, but not both. The result is a mesh with 7×7 = 49
elements. I refine the mesh five times, producing a mesh with 224 × 224 = 50, 176 equally-
sized square elements. Figs. 5.20 and 5.21 illustrate my meshing strategy.

In section 5.4, I ran HSM using 8 billion simulation particles, and plotted it alongside an
unaccelerated Monte Carlo (UMC) solution calculated using 16 million simulation particles,
and a radiation diffusion solution. Fig. 5.22 shows those results. Here, I replace the HSM
solution plot with a plot of the DHSM solution using only 64 million particles. Fig. 6.12
demonstrates that 64 million particles were sufficient to eliminate any visibly-discernible
noise from the DHSM solution. This represents over 100 times fewer particles than were
required to produce the visibly-noiseless HSM solution shown in Fig. 5.22.

Just as we saw in section 6.3 with the DHSM solution to the LCP problem, the DHSM
solution to the LL problem disagrees with the UMC solution. I believe my UMC solution to
be more accurate than my hybrid method solution because it involves fewer approximations,
and because my UMC solution to the LCP problem closely agreed with the SN solution in
[39]. Thus, the disagreement between Fig. 6.12 (a) and (b) demonstrates that the issue of
the undefined derivative at the interface between two materials is present regardless of the
geometry, because the interface issue arises in both LCP and LL calculations using DHSM.
In section 3.8.2, I suggested a way to fix the issue, though I have not yet implemented my
suggestion.
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(a) (b)

(c)

Figure 6.12: DHSM (a), UMC (b), and diffusion (c) solutions for the linearized lattice.
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6.4.1 Particle-Equivalent Comparisons with Varied Optical
Thicknesses

Despite an improvement of two orders of magnitude in the number of particles required for
the DHSM solution to be visually noiseless, 64 million is still four times more particles than
the 16 million particles required by UMC. In this section, I run the same problems from
section 5.4.1 using DHSM instead of HSM. I vary the opacities in the LCP so that the ratio
σthick
t /σthin

t is equal to 2, 10, 100, and 1000. The highest ratio corresponds to the opacity
values from the LL problem that I defined. The other three values are choices that I made
to investigate the behavior of my hybrid method. Table 5.1 shows the complete material
data for the four optical-thickness ratios.

Figs. 6.13 to 6.16 show pseudocolor plots of the results of 24 calculations. Each of the
four figures has three subfigures with results for calculations using (a) one million, (b) four
million, and (c) sixteen million simulation particles. Each subfigure contains two plots. The
top plot is DHSM and the bottom plot is UMC. I dedicate one paragraph of comments on
each of the four figures.

1) Comparing Fig. 6.13 to Fig. 5.23, specifically the top half of the (a) subfigures,
DHSM is noticeably more noisy than HSM. This indicates that HSM may be more effi-
cient for optically-thin calculations. The DHSM solution also shows less agreement with
the UMC solution than the HSM solution, which is likely related to the aforementioned
non-differentiability issue on the material interface. Finally, the DHSM solution violates the
non-negativity property of the transport Eq. (1.13a).

2) Comparing Fig. 6.14 to Fig. 5.24, specifically the top half of the (a) subfigures, DHSM
and HSM have approximately commensurate amounts of visible noise. Interestingly, the
DHSM noise appears to be lower frequency than the HSM noise, in the sense that the DHSM
noise manifests as unphysical streaking in the solution, whereas the HSM noise presents as
unphysical spotting in the solution. However, the noise frequency difference between HSM
and DHSM for the σthin

t = 10 LL calculation does not look as great as for the LCP calculation.
3) Comparing Fig. 6.15 to Fig. 5.25, specifically the top half of the (a) subfigures, DHSM

is less noisy than HSM. Increasing the number of HSM particles by a factor of 16 significantly
reduces the noise, though the resulting amount of noise is visually similar than the amount
of noise in the DHSM calculation with 16 times fewer simulation particles.

4) A comparison of Fig. 6.16 to Fig. 5.26 demonstrates the most dramatic difference
between the DHSM and HSM method, which occurs due to the regions of very optically-
thick material in the problem. Not only do the HSM and DHSM solutions have visible
noise, but the UMC solution does as well. Inspecting the (a) subfigures reveals that DHSM
converges to a reasonable solution at only one million simulation particles, whereas the HSM
iteration diverges, resulting in an unphysical solution characterized by a single bright spot,
and the brightness of the unphysical bright spot is about six orders of magnitude too bright.
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(a) (b)

(c)

Figure 6.13: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of
a,b,c) and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 2.
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(a) (b)

(c)

Figure 6.14: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of
a,b,c) and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 10.
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(a) (b)

(c)

Figure 6.15: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of
a,b,c) and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 100.
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(a) (b)

(c)

Figure 6.16: Solutions using 1e6 (a), 4e6 (b), and 16e6 (c) particles with DHSM (top of
a,b,c) and UMC (bottom of a,b,c) for the LL problem with σthick

t /σthin
t = 1000.
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6.4.2 Confirming Avoidance of Noise Amplification

This section shows that the mixed FEM discretization of the SMM successfully avoids am-
plifying the noise in the SMM data for the LL problem using the DHSM method. Combined
with the results from section 6.3.2, which examined the LCP DHSM solution, the LL DHSM
solution in this section provides confidence that DHSM avoids amplification regardless of
geometry. This is because the LL is a lattice, whereas the LCP is a pipe.

In section 5.4.2, I demonstrated amplification avoidance in the HSM method by plotting
different HSM iterates for a calculation using 500 million particles. I do the same here with
DHSM, but using only 500 thousand particles5. The calculations in this section use DHSM
to solve the LL problem that I defined in section 5.4, for which σthick

t /σthin
t = 1000. I plot

unconverged quantities to show when the noise appears and how it changes during the DHSM
iteration.

Below, I present plots of DHSM iterates alongside Algorithm 3, which is the HSM algo-
rithm. In section 6.3.2, I showed how to modify Algorithm 3 so that it describes the DHSM
logic instead of the HSM logic. These modifications also apply here in this section. The logic
in Algorithm 3, and the DHSM modifications, are independent of the problem geometry.

Fig. 6.17 shows Algorithm 3 alongside pseudocolor plots of the unscattered estimator
ϕ̂
(0)
new, the estimator first iterate ϕ̂

(1)
new, and the estimator at convergence ϕ̂

(8)
new. Fig. 6.18 shows

the unscattered estimator ϕ̂
(0)
new and the estimator first iterate ϕ̂

(1)
new again, but with the second

moment system solution iterate φ(1) interposed between them.
Fig. 6.17 (a) shows that the unscattered solution ϕ̂

(0)
new is localized compared to the con-

verged solution ϕ̂
(8)
new in (c). Additionally, the noise appears to be preserved (neither damp-

ened nor amplified) during the iteration, because the amount of noise in the converged iterate

ϕ̂
(8)
new, shown in (c), is visibly similar to that of the first iterate ϕ̂

(1)
new, shown in (b).

The noise in the unscattered solution ϕ̂
(0)
new is not amplified by the SMM solve, but rather

slightly dampened, as judged by comparing Fig. 6.18 (a) to (b). Thus, the noise in the
DHSM solution results from the Monte Carlo transport solve, not the moment system solve.
Avoiding differentiation of the correction tensor by solving the first order moment system
using a FEM to offload the derivative appears to be effective for the prevention of noise
amplification in the DHSM method.

5I use a factor of 1000 fewer particles so that I can see the noise in the DHSM solution.
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(a)

(b)

(c)

Figure 6.17: The DHSM estimator ϕ̂new for the LL problem before iterating (a), after the
first cycle (b), and at convergence (c), where 8 cycles were required to converge DHSM using
500 thousand particles.
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(a)

(b)

(c)

Figure 6.18: The DHSM estimator ϕ̂new for the LL problem before iterating (a), φ in the
first cycle (b), and ϕ̂new after cycle 1 (c). The pseudocolor plots in (a) and (c) are identical
to the pseudocolor plots in Fig. 6.17 (a) and (b), respectively.
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Chapter 7

Conclusion

In this final chapter, I provide concluding remarks which make use of the physical and mathe-
matical language developed in the preceding chapters. Thus, this chapter contains a synopsis
of the dissertation which is more technical than what I provided in the dissertation abstract,
and one which is more thorough as well. I provide this synopsis in sections 7.1 and 7.2. I
end this conclusion with suggestions for future work in section 7.3, and a dissertation coda
in section 7.4.

7.1 Hybrid Second Moment Method

My hybrid second moment (HSM) method is a novel method for solving the equations of
thermal radiative transfer (TRT). The kernel of the TRT system is a linear Boltzmann
transport equation for the radiation intensity, which arises from linearizations of the TRT
system, an important example of which is the implicit Monte Carlo (IMC) linearization. My
HSM method takes the standard, unaccelerated Monte Carlo (UMC) method for solving
the transport equation using the IMC linearization and replaces it with the iteration in
Algorithm 3. The iteration couples the transport equation with the moment system from
the Second Moment Method (SMM). Fig. 1.3 shows the transport equation, the moment
system, and the coupling terms: T, β, and φ. In my HSM method, I use a deterministic
finite element method (FEM) to compute φ in a procedure described in Chapter 2, and
I compute estimates of T and β using the Monte Carlo method for linear transport in a
procedure described in Chapter 3. Algorithm 1 and Algorithm 2 are pseudocode for the
deterministic finite element method procedure and the Monte Carlo procedure, respectively.

A good method for Boltzmann transport requires verification to ensure that the numerical
method accurately computes the solution of the transport equation, and to ensure that the
implementation achieves the expected convergence order, which I confirmed in section 5.1
with my presentation of the scaling study results in Fig. 5.4. It must also perform well in
the thick diffusion limit (TDL), a challenging regime for transport methods characterized
by arbitrarily optically-thick media. I presented TDL calculations in section 5.2, where I
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showed that HSM dramatically outperforms UMC runtimes in Fig. 5.7, but also provided
an empirical demonstration of the undesirable dependence of the HSM variance on the TDL
parameter in Fig. 5.8.

My final HSM calculations, which considered the optically-thick and optically-thin mul-
timaterial Linearized Crooked Pipe problem in section 5.3, and Linearized Lattice problem
in section 5.4, demonstrate that HSM could be a competitive alternative to UMC were it
not for the noise issue in the HSM solution. Fig. 5.12 demonstrated that my HSM, UMC,
and diffusion implementations appear to be correct, because of how closely my pseudocolor
triptych matches Fig 9 of Olivier et al. [39]. Finally, my Lattice problem pseudocolor trip-
tych in Fig. 5.22 shows that the HSM noise issue appears to be independent of the geometry,
because both the Linearized Crooked Pipe and the Linearized Lattice demonstrate the issue.

Both the Linearized Crooked Pipe (LCP) problem results in Figs. 5.17 and 5.18, and
the Linearized Lattice (LL) problem results in Figs. 5.27 and 5.28 confirm that the mixed
finite element solve of the SMM system does not amplify the Monte Carlo noise in the SMM
data estimators T̂ and β̂. I did this by presenting unconverged, or intermediate results
en route to the converged HSM solution, which demonstrate that the noise issue is absent
during sampling of the fixed source, absent during the first moment system solve, and finally
manifests during the first sampling of the scattering source. Furthermore, the noise seeded
at this point in the calculation is maintained for all following cycles through convergence,
in the sense that the amplitude of the noise appears to be the same in the first and last
iterates. This indicates that my choice to solve the first order SMM system using a FEM
was effective at avoiding noise amplification.

7.2 Deviatoric Hybrid Second Moment Method

My deviatoric hybrid second moment (DHSM) method is a variation of my HSM method
which fixes the noise issue. The main difference between the two methods is that DHSM
involves computing the deviation of the intensity from isotropy, and this causes the variance
of the DHSM estimator of the intensity to be significantly smaller than that of the HSM
estimator.

In Chapter 6, I presented DHSM calculations for the same problems that I solved in
Chapter 5 using HSM. My results in Chapter 6 show significantly less noise for a given
number of Monte Carlo simulation particles, from which I conclude that DHSM fixes the
HSM noise issue. The noise reduction provided by DHSM aligns with my expectation, as
established by my derivation of the variance of the HSM and DHSM estimators in sections 3.6
and 3.8.3, respectively. My derivations show that the variance of the latter is significantly
smaller than that of the former.

However, while addressing the noise issue, I inadvertently introduced another issue that
arises in DHSM but not HSM: convergence to an incorrect solution around material in-
terfaces. This new issue is caused by the non-differentiability of the intensity on material
interfaces. In section 3.8.2, I describe how non-differentiability invalidates my deviatoric
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estimator derivation. In the same section, I suggest how one might fix the issue by solving a
minimization problem. I have yet to implement my suggestion. I suspect that its implemen-
tation could result in a method that is not only competitive with other IMC acceleration
techniques, but potentially superior.

7.3 Future Work

The highest priority for future work on either my novel HSM method or its deviatoric
variation (DHSM), is to fix DHSM so that it does not converge to an incorrect solution around
material interfaces. The approach that I suggest attempts to fix the non-differentiability of
the intensity by solving a minimization problem. If that works as expected, the next step
would be to implement time dependence, calculate time dependent Crooked Pipe and Lattice
problem solutions, and compare with UMC. If my method continues to perform well, then
adding frequency dependence—the final piece required to create a full-dimensional TRT
solver—seems reasonable. The path of future work would then open into areas which one
could choose to pursue simultaneously:

1. Hydrodynamics Coupling. Hot matter not only radiates, but it can also flow, like
a fluid. Hydrodynamic calculations can incorporate the effect of the radiation field
through radiation pressure and radiation momentum terms, which appear as sources
in the mass and momentum conservation equations in the Euler equations for fluid
mechanics, respectively. Forming these terms simply requires computing the zeroth
and first angular moments of the radiation intensity, which are Eqs. (1.17) and (1.18),
respectively.

2. Physical Scattering. The TRT equations I considered in this dissertation do not have
a scattering term. Thus, the scattering in my linear transport equation is a proxy for
effective scattering, not physical scattering. Common physical scattering mechanisms
present in astrophysical phenomena and applied physics experiments include Thomson
scattering and Compton scattering. The latter process can shift the radiation frequency
spectrum dramatically. Incorporating physical scattering processes such as these can
be essential for predictive science modeling.

3. Graphics Processors. The architectural shift in general-purpose computing from cen-
tral processors to application-specific integrated circuits, initiated by successes using
graphics processors for calculations which have nothing to do with computer graphics,
seems to indicate that TRT methods which can run on different architectures are more
useful than single-architecture methods restricted to central processors. The Monte
Carlo component of HSM and DHSM, which consumes a majority of the calculation
runtime, would be the focus of a graphics processor porting effort. One might consult
existing research on the subject of porting Monte Carlo transport to graphics proces-
sors [76, 95–102]. If the moment solve becomes the bottleneck, then one might consider
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re-computing the right-hand side and solving the linear system on the device. One ex-
ample of a linear solver for the mixed FEM problem that was expressly designed for
graphics processors is Pazner et al. [62].

4. Spectral Line Transport. The applied physics experiment described in Appendix A con-
tains plasma which is not collisionally dominated, therefore thermal radiative transfer
is an inadequate approximation of the radiative transfer problem that one must solve
in order to accurately model the experiment. One could correct this problem by aug-
menting the TRT system with additional equations describing the populations of the
ion excitation states. Chapter 9 “Spectral line transport” in Castor [3] describes how
to do this in general, and one could adapt Castor’s description to HSM.

5. High Order. My HSM method, and most of its deviatoric variation (DHSM), are
lowest-order. All the quantities in HSM, and nearly all quantities in DHSM, are piece-
wise constant, meaning that the quantities are single-valued within an element. Are
there any advantages to using linear, quadratic, or higher order representations? One
example where there could be an advantage in runtime and physics fidelity is when
the hydrodynamics capability with which one couples a TRT solver, such as HSM or
DHSM, computes a high order solution on a curved mesh, as in Dobrev et al. [103].
Coupling lowest-order HSM or DHSM to such a capability requires a refinement-and-
coarsening operation which adds to the calculation runtime and introduces additional
numerical error. For an example of refinement-and-coarsening, see Section 4.2.4 “HO
to LOR to HO” in [104].

The future is full of interesting work for novel TRT methods like HSM and its deviatoric
variation, DHSM.

7.4 Coda

In this dissertation, I describe a novel method for TRT, called HSM, and a variation called
DHSM. I demonstrate the viability of my method by calculating the solution to gray, steady-
state, linear transport problems. I verified that my HSM method can accurately calculate
the transport solution, and that the accuracy increases under mesh refinement and MC
sample augmentation, meaning that the numerical error and uncertainty in HSM can be
systematically attenuated. The same is true for DHSM, except around material interfaces,
where DHSM converges to an incorrect solution. I showed that my choice to solve the first
order second moment system using a FEM successfully avoided amplification of MC noise
in the correction tensor. I discovered a noise issue in HSM which worsens with optical
thickness. I fixed the noise issue by deriving and implementing a variation of HSM, called
DHSM, in which I compute an alternative estimator for the SMM correction tensor which has
significantly lower variance. I concluded my dissertation with a description of future work
that must be completed in order to turn my HSM method, or its deviatoric variation, into a
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production capability for the simulation of hot matter in multiphysics models of astrophysical
and applied physics phenomena, an example of which I describe in Appendix A.
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Appendix A

Laser Fusion Experiment

This appendix describes a laboratory astrophysics experiment that uses the world’s most
energetic laser to achieve stellar conditions and induce nuclear fusion. The plasma in the
experiment emits mostly soft x-ray radiation. The TRT equations described in this disser-
tation, which I solve with my novel hybrid method, are useful for modeling this spectral
band. Some of the plasma in the experiment, for some of the duration of the experiment,
does not have a well-defined temperature in the sense that I described in section 1.1.1. This
means that modelling the experiment with TRT requires augmenting the TRT system with
additional equations describing the populations of the ion excitation states. Solving the aug-
mented TRT system is outside the scope of this dissertation. Nonetheless, the experiment
highlights the importance of models like TRT, and the importance of having methods which
can efficiently and accurately solve the TRT equations.

Why was the first fusion experiment to achieve target gain exceeding unity not realized
until 2022, even though the technique used in the experiment was proposed in 1972 [105]?
One reason was that important material data at the stellar conditions necessary to conduct
the experiment had yet to be collected1. Another reason was that the computer models used
to simulate the experiment did not resolve all the relevant physics. Some examples are: laser
energy deposition at high intensities where laser plasma instability is significant, time- and
frequency-dependent radiation transport through heterogeneous media in which the photon
mean free path varies over many orders of magnitude, and turbulent hydrodynamics in a
highly convergent geometry starting from an initial condition containing substantial and
subtle asphericity. Simulating this physics remains challenging today.

The physical quantities that must be calculated to model the experiment cannot be
calculated in isolation. For instance, the stellar conditions of the experiment prevent the
material temperature from being calculated without also calculating the intensity of the
radiation. This requires coupling the equations for compressible hydrodynamics with the
radiative transfer equation in a discipline known as radiation hydrodynamics.

1Examples include a material constitutive relation for the material stress, another material constitutive
relation for determining the material pressure given the material density and material internal energy, and
also the material opacity given the material temperature, material density, and photon frequency.
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Consider first the complications associated with calculating the material temperature.
The distribution of kinetic energies of the particles that constitute the matter in the exper-
iment cannot be characterized by a single value, which means that multiple “temperatures”
must be calculated. Nor can it be characterized by two values, so calculations which assume
that the electrons and ions have Maxwellian velocity distributions at distinct temperatures
will be incorrect unless efforts are made to correct them.

Computing the radiation intensity is also complicated. The distribution of directions
traveled by the photons which constitute the radiation in the experiment is not isotropic,
therefore Eddington’s approximation is an incorrect simplification, and so is the radiation
diffusion approximation, because Eddington’s approximation follows from the diffusion ap-
proximation [3]. This means that solving a radiation diffusion approximation to the radiative
transfer equation will be incorrect unless efforts are made to correct the diffusion approxi-
mation.

Using the radiative transfer equation instead of its diffusion approximation obviates the
need for these corrections and provides the computer model of the experiment with greater
accuracy. However, the commonly-used simplification known as “thermal” radiative trans-
fer, also known as the local thermodynamic equilibrium (LTE) regime approximation, will
be incorrect because the transfer of energy between particles is not dominated by particle
collisions. This means that the ionization and excitation distribution of the plasma is not
Saha-Boltzmann, and the emission is not Planckian. Instead, the energy transfer is domi-
nated by photonics, collisional-radiative models must be used to describe the ionization and
excitation, and the emission is more complicated than the Planck function. Opacity is also
complicated by the absence of a well-defined plasma temperature.

A.1 Description of the laser fusion experiment

The first fusion experiment to achieve target gain exceeding unity occurred in 2022 at the
National Ignition Facility (NIF) within Lawrence Livermore National Laboratory (LLNL)
located in Livermore, California, United States of America. The principal apparatus at NIF is
the world’s most energetic laser, and the primary purpose of NIF is to collect experimental
data necessary for the stewardship of the United States nuclear weapon stockpile. The
facility cost about 3.5 billion dollars, required about twenty years to construct, and has been
in operation for about ten years. The NIF annual budget is about 350 million dollars and the
laser is fired about 350 times per year, so each experiment costs about one million dollars.

The most important NIF application aside from conducting experiments related to stock-
pile stewardship is to demonstrate the laser fusion concept by showing that laser-induced
fusion reactions can produce more energy than the amount of energy that was required to
induce the reactions. The NIF laser fusion experiment differs in some ways from the original
laser fusion proposal, which was made over fifty years ago in 1972 [105], but the fundamental
idea of imploding a fusion fuel capsule using a high energy laser remains the same. Specif-
ically, the NIF laser fusion experiment operates in the following manner: a large bank of
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capacitors is charged with about 300 MJ of electrical energy in a one minute period, and
then discharged in a few hundred microseconds to energize flashlamps which induce a popu-
lation inversion in a neodymium doped glass lasing medium to produce about 3 MJ of 1.064
micron infrared light. After a few trips through the lasing medium, half of the 192 beams
are directed towards the top of a target chamber, which is an evacuated sphere ten meters
in diameter, and the other half towards the bottom.

Immediately before entering the target chamber, the light passes through optics which
convert the 3 MJ of infrared light to 2 MJ of 347 nanometer ultraviolet light, tripling its
frequency. Energy is sacrificed to increase frequency because of the results of experiments in
which gold disks were illuminated with high intensity laser light. The experiments demon-
strated that higher frequency light achieved greater absorption, greater x-ray conversion
efficiency, and reduced suprathermal x-ray conversion efficiency for a fixed intensity2. The
2 MJ of ultraviolet light enters the target chamber and illuminates the interior walls of a
hollow cylinder target approximately 1 centimeter in height nearly uniformly. The cylinder
is made of gold-lined depleted uranium. The cylinder is a solid until illumination, which
turns the illuminated portion into a plasma, which radiates mostly soft x-rays.

The x-rays that do not escape from the cylinder or get absorbed in the gold travel towards
the center of the cylinder and deposit their energy in a spherical fusion fuel capsule with
a radius of about 1 millimeter. A thin membrane holds the capsule in the center of the
cylinder. The outside of the capsule is made of dense carbon doped with tungsten. The
dopant shields the fuel from hard x-rays, which would otherwise pass through the dense
carbon exterior of the fuel capsule and heat the fuel at this early stage during which fuel
heating is not desired3. The inside of the fusion fuel capsule contains equimolar deuterium
and tritium gas, which is filled to a density that exceeds the capacity of the pressure vessel,
therefore a cryogenic system creates a frozen fuel layer between the gaseous fuel and the
dense carbon.

Energy deposition due to the absorption of soft x-rays in the carbon causes the carbon
layer to explode outwards, inducing an inward implosion of the fusion fuel4. At peak com-
pression, the radius of the fuel capsule is thirty times smaller than the original radius, and
the volume is about 27,000 times smaller than the original volume. The kinetic energy of
the implosion has been converted to internal energy of the fuel5. The fusion reaction rate
accelerates in a central hotspot6. The dominant fusion reaction is,

2
1H+ 3

1H −−→ 4
2He +

1
0n , (A.1)

in which deuterium and tritium fuse to produce a neutron with about 14.1 MeV of energy
and an alpha particle with about 3.5 MeV of energy7. If the cold fuel surrounding the hotspot

2See Figure 8.30 through 8.32 in section 8.7.6 Laser Wavelength Trends in [2].
3Premature heating is called “preheat” and can also be caused by hot (“suprathermal”) electrons.
4This phase of the experiment is called “the implosion”.
5This phase of the experiment is called “stagnation.”
6This phase of the experiment is called “burn”.
7An alpha particle is a helium nucleus, which is a deuterium-tritium (“DT”) fusion product.
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is sufficiently dense, then the alpha particles will deposit their energy in the cold fuel, thus
heating it and creating a burn wave that propagates outward from the hotspot. The burning
fuel explodes outwards, ending the experiment.

About ten nanoseconds are required for the laser to deliver all 2 MJ of light to the target.
The laser is held at a very low power for about half a nanosecond to burn the membranes
which cover the top and bottom of the hollow cylinder. Then, the laser power increases in
three jumps, with the powers of the jumps and the time between them chosen so that the
three shocks which are triggered by the three jumps overtake each other shortly after they
travel into the fusion fuel. The peak power of about 450 terawatts (TW), which is achieved
as a result of the third and final jump, is sustained for about four nanoseconds. At 400 TW,
the laser light intensity at peak power is about 5× 1014 W/cm2 at the focus of each group of
four beams [106]. The 192 beams are divided into 48 groups of 4 called quads. Each beam
in a quad is focused at the same spot on the target.

A panoply of measurements are used to evaluate the success of the experiment. The
experimental measurement devices are called experimental “diagnostics” and their complex-
ity approaches that of the experiment itself. Radiographs of the hotspot revealed oblate
asphericity of the implosion, which was corrected through techniques that deliver relatively
more laser energy to the equator of the fuel capsule, such as cross-beam energy transfer
(CBET) from outer beams to inner beams. An 18-channel spectrometer, called “Dante”,
measures the time-resolved x-ray intensity spectrum between 50 eV and 20 keV using a
complicated arrangement of x-ray filters, mirrors, and diodes [107–109]. Ideally, the hollow
cylinder that is illuminated by the laser re-emits the laser energy in a continuum radiation
spectrum that closely fits a Planckian at about 300 eV, which has a peak intensity at a
frequency of 2.82 * 300 = 846 eV. The spectrum that Dante measures is an empirical as-
sessment of the effectiveness of experimental design methodologies for the suppression of
undesirable emission deviating from the ideal 300 eV Planckian.

The hotspot dynamics obey a power balance equation,

cDT
dT

dt
= fαPα − fbPb − Pe −

P

m

dV

dt
, (A.2)

where cDT is the heat capacity of the equimolar deuterium-tritium fuel and T is the hotspot
temperature, so the left-hand side is hotspot power [110]. On the right-hand side, fα ≤ 1
is the fraction of alpha particles stopped in the hotspot, Pα is the power produced per
deuterium-tritium fusion, fb is the fraction of hotspot self-emission x-rays that escape the
hotspot, Pb is the power due to bremsstrahlung emission of the hotspot, Pe is the power
due to electron conduction, P is the hotspot pressure, m is the hotspot mass, and V is the
hotspot volume.

The right-hand side of Eq. (A.2) is the sum of power gain and power loss terms. The first
right-hand side term accounts for power gain due to alpha heating, the second for loss due to
self-emission of bremsstrahlung radiation, and the third is loss due to electron conduction.
The fourth term is a power gain during the implosion because the sign of the hotspot volume
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time derivative is negative. The sign flips during the explosion and it becomes a power loss
term.

The relative sizes of the terms in Eq. (A.2) are used in the definition of important and
desirable experimental regimes. A “burning plasma” is achieved when the alpha heating
term exceeds the other power gain term, which is power gain due to the conversion of the
kinetic energy of the implosion to internal energy. The “Lawson criterion” is satisfied when
the alpha heating term exceeds not only the other power gain term, but also substantially
exceeds the modulus of the power loss terms8. Satisfaction of the Lawson criterion is also
called “ignition”. In an influential report, the United States National Academy of Sciences
(NAS) defined ignition as “target gain exceeding unity” [113].

The most important metric of experimental success is the target gain,

Gtarget = Y/Etarget . (A.3)

The yield Y is the total energy produced by fusion reactions and Etarget is the laser energy
delivered to the target. The yield can be measured by counting the 14.1 MeV neutrons
emitted by the DT fusion reactions, and then multiplying by the total energy output of a
single DT fusion, which is about 17.6 MeV. This is the sum of the 14.1 MeV and the 3.5 MeV
of kinetic energy carried by the neutron and the alpha particle, respectively. The energy of
the reaction products is due to their velocities, so the neutron travels at about one sixth
of the speed of light. Its mean free path is large with respect to the extent of the plasma,
so nearly all of the neutrons escape, and thus the neutrons may be counted in a neutron
detector directed at the plasma. Each neutron that arrives at the detector corresponds to
one fusion reaction, so the number of fusion reactions is equal to the number of neutrons
counted.

Experiments at NIF are identified with an alphanumeric character sequence of the format
Nyymmdd where N is used to indicate that the experiment was conducted at NIF, yy is
replaced with the last two digits of the four digit year in which the experiment was conducted,
mm is replaced with two digits designating the month, and dd is replaced with two digits
designating the day. Experiments are colloquially called “shots”. The goal Gtarget > 1 was
achieved after a little over ten years of NIF operations with Y ≈ 3 MJ for Etarget ≈ 2 MJ,
thus providing Gtarget ≈ 1.5 in an experiment denoted N221205 (meaning NIF experiment in
the year 2022, month 12, and day 05) [114]. N221205 achieved the NAS definition of ignition
(Gtarget > 1) and the experiment was reported in “tens of thousands of news stories that
reached billions of people around the globe” [115]. N221205 produced about 1018 neutrons,
which was about twice as many neutrons as the best previous shot.

The best shot preceding N221205 was the first shot to satisfy the Lawson criterion:
N210808 [116]. This shot had Y ≈ 1.37 MJ for Etarget = 1.9 MJ and thus Gtarget < 1.

8Lawson’s criterion [111] is alternatively explained on page 153 of Tarter [112] as the product of the ion
number density and the confinement time. This product must be large at a suitably high ion temperature,
about 10 keV or so. Lawson’s criterion is applicable to both magnetic and laser fusion but achieved very
differently. Magnetic fusion confines low density plasma for seconds and laser fusion confines high density
plasma for nanoseconds.
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N221205 produced nearly an order of magnitude more neutrons than the best shot preceding
it, which were the first shots to achieve a burning plasma, which are described in a Nature
article [117]. This diagram summarizes the shot progression just described,

max( all shots
before N210808)

∼10x−−−→ N210808
∼2x−−→ N221205 ,

where the ∼10x and ∼2x above the arrows denotes the approximate multiplicative increase
in neutron yield. Table A.1 summarizes the definitional categories satisfied by the afore-
mentioned shots. The journey that was required to achieve the results in table A.1, the
beginning of which preceded the NIF, is illuminated in Rosen [118].

max( all shots
before N210808) N210808 N221205

burning plasma ✓ ✓ ✓
Lawson criterion ✓ ✓

Gtarget > 1 ✓

Table A.1: Satisfaction of definitional categories for selected NIF shots.

A.2 Computer model of the laser fusion experiment

Computer models of the fusion experiment have been in development for over half a century.
The largest section of the 1972 publication proposing the laser fusion experiment is titled
“Computer Calculations.” It included results from a computer model which was used to
predict the outcome of the proposed experiment and demonstrate that the experiment could
succeed [105]. In the same year, LLNL created an internal collaboration and organizational
entity colloquially known as the “laser program” to work towards achieving the proposed
experiment. The program funded lasers that became the predecessors of the NIF laser.
Generations of lasers were distinguished by their energy: a new generation of laser was
signified by an increase in the laser energy delivered to the target.

The physics of laser fusion is highly non-linear and this makes it difficult to extrapolate
experimental results to higher laser energies. A computer model which solves the non-linear
equations governing the physics of the experiment could be used to predict the outcome of
extrapolated experiments. This is what motivated the authors in [105] to include computer
calculations. Their practice persists: every significant advancement towards achieving the
experiment that they proposed has been accompanied by computer calculations.

Experiments on LLNL lasers preceding the NIF laser, accompanied by computer models
that allowed extrapolation to laser energies exceeding the energy of any existing laser, re-
sulted in a NIF design specification that its designers hoped would be sufficient to achieve
the scientific milestones of ignition and target gain [119]. Fifteen years later, NIF construc-
tion was completed, the laser achieved “first light”, and the targets proposed in [119] were
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fabricated, fueled, and fielded. The designers were disappointed: the yield of the best of
these first shots was only 1 kJ, which was three orders of magnitude less than the 2 MJ gain
threshold. Hundreds more shots, fielded over the next ten years, were required to get to
ignition and target gain: three years to achieve 10 kJ, seven more years to achieve 100 kJ, a
few more months to achieve 1 MJ and then 1 more year to exceed the 2 MJ gain threshold9.

The computer models which solved the non-linear equations governing the physics were
overly-optimistic in their predicted yield. A target which burned on the computer twenty-five
years ago fizzled when fielded at NIF. The computer models were deficient, but they were
amended, and they served as essential tools for testing design variations. One important
example of this computer-assisted experimental design process is the biggest target design
modification in the history of NIF. Designers replaced high-gas-fill cylinders and plastic cap-
sules with low-gas-fill cylinders and diamond capsules [121]. Computer models demonstrated
improved implosion characteristics that were realized with the new design [122].

Computer models are also important because they are required for interpreting the results
of the experiment. Consider once more Eq. (A.2). The four terms on the right-hand side
are not accurately measurable. Instead, they must be computed in a simulation which
is initialized with the experimental parameters supplying the initial condition, boundary
conditions, and observed laser pulse. The four terms are computed in the calculation by
solving 1) charged particle transport, 2) radiative transfer, 3) electron conduction, and 4)
compressible hydrodynamics equations. The relative size of the four terms determines the
categorization of the experiment (see table A.1).

9For a time-series plot of fusion yield from the year 2010 through 2025, see Figure 5 in [120].


