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ABSTRACT 

The Lawrence Livermore National Laboratory Monte Carlo Transport Project has extended a prior 
port of production code from Nvidia GPUs on the Sierra computer to AMD GPUs on the El Capitan 
computer. El Capitan is equipped with AMD InstinctTM MI300A APUs. The port included use of the 
HIP language extension for El Capitan rather than the prior CUDA extension. Obstacles related to 
generating robust code were encountered and many issues resolved. Additionally, run time 
performance issues have been encountered, many of which have also been resolved in collaboration 
with the vendor and tool chain developers. Monte Carlo speedups are 2.5x for neutron transport and 
2.3x for thermal photon transport codes when comparing one node of El Capitan to one node of 
Sierra. When comparing El Capitan to a large-scale Xeon based CPU computer, Monte Carlo 
speedups are 3.1x for neutron transport and 3.0x for thermal photon transport. Additionally, for a 
less idealized, four node simulation, with domain decomposition and streaming particles, El Capitan 
shows a speedup of over 3.1x when compared to Sierra and 4.3x compared to a Xeon computer. 

Keywords: Monte Carlo, LLNL, El Capitan, HIP, MI300 

1. INTRODUCTION 

Lawrence Livermore National Laboratory (LLNL) will deploy the fourth Advanced Technology System 
(ATS) computer named El Capitan (ATS-4) in 2025 [1]. El Capitan will utilize AMD InstinctTM MI300A 
APUs (Accelerated Processing Unit) [2]. LLNL codes which were previously ported to the Sierra (ATS-2) 
computer which utilized Nvidia V100 GPUs (Graphics Processing Unit) are now being ported to the 
MI300A APUs. The LLNL Monte Carlo Transport Project develops two production codes: Mercury, a 
Monte Carlo (MC) particle transport code [3], and Imp, an implicit Monte Carlo (IMC) [4] thermal photon 
transport code [5]. These codes are ported to distributed and shared memory CPU architectures using MPI 
and OpenMP for the host CPUs and to GPUs. The port to ATS-2 Nvidia GPUs utilizing the CUDA language 
extension was presented at the M&C 2023 conference [6]. The MI300A APUs are similar to GPUs from a 
software development perspective but require the use of Heterogenous-compute Interface for Portability 
(HIP) aware compilers rather than CUDA. In addition to the use of HIP, the port required modifications to 
the memory model and code enhancements necessary for robustness and performance.  
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The goal of the work presented in this paper is to run calculations on ATS-4 and compare node to node 
performance relative to ATS-2 as well as to a current Commodity Technology System-2 (CTS-2) machine. 
We previously reported [6] the performance improvements obtained on ATS-2 compared to an older CTS-
1 computing platform; we no longer use CTS-1 for performance comparisons. As both ATS-2 and CTS-2 
machines are in daily use at LLNL, these provide the baseline to which we will compare the performance 
of the Monte Carlo transport codes on El Capitan (ATS-4). 

Enabling Monte Carlo transport codes on GPU architectures is currently an active research area. Two recent 
examples include porting the Shift Monte Carlo code to Nvidia GPUs [8] and the OpenMC Monte Carlo 
code to different GPU architectures [9]. Pozulp et al. [6] reported on the porting of the Mercury and Imp 
Monte Carlo codes to Nvidia GPUs, demonstrating speedups compared to traditional CPU based clusters.  

The remainder of this paper is organized as follows. In Sec. 2, we describe the architecture and software 
stack for CTS-2, ATS-2 and ATS-4. In Sec. 3, we describe the high-level code design of the LLNL Monte 
Carlo codes and general modifications we have made for the initial ATS-4 port. We then describe in Sec. 4 
code modifications we have made to improve the robustness of compiled code produced by the compiler 
toolchain. In Sec. 5, we describe investigations and changes in the Monte Carlo codes aimed at improving 
performance on the AMD MI300A architecture. We then present particle processing throughput 
performance assessments for three test problems in Sec. 6. We conclude and offer suggestions for future 
work in Sec. 7. 

2. CTS-2, ATS-2 and ATS-4 HARDWARE AND SOFTWARE STACK 

CTS-2 – Each node of CTS-2 is equipped with two 56-core Intel Xeon Platinum 8480+ processors and 256 
GB memory. These are 4th generation Intel Xeon CPUs. The programming model is MPI for both intra-
node and inter-node communication. OpenMP threads may be used on node to reduce the MPI ranks and 
allow shared memory usage across threads.   

ATS-2 – Each node of ATS-2 is equipped with four Nvidia V100 GPUs and two IBM Power9 CPUs each 
with 22 cores. There is 256 GB memory available to the CPUs, and 16 GB of high bandwidth memory 
(HBM2) memory for each of the GPUs. The memory is separate between the CPU and GPU. The 
programming model is MPI and OpenMP for the CPUs and the Nvidia language extension CUDA to run 
kernels and move data to and from the GPU.  

ATS-4 – Each node of ATS-4 is equipped with four AMD InstinctTM MI300A APUs. The MI300 APU is a 
multi-chiplet design containing six GPU chiplets and three CPU chiplets. The six GPU chiplets are 
presented as a single GPU. The three CPU chiplets appear as 24 x86-64 cores. There is 128 GB of high 
bandwidth memory (HBM3) shared between the CPU and GPU chiplets, for a total of 96 CPU cores, four 
GPUs, and 512 GB memory per node. There is a single memory space accessible by both the GPU and 
CPUs. The programming model is MPI and OpenMP for the CPUs and the AMD language extension HIP 
to run kernels on the GPU [1,2]. 

The ATS-4 single memory model stands in contrast to ATS-2 which had separate memory systems for the 
CPU and the GPU sections of the machine. The single address space and larger GPU accessible memory 
on ATS-4 are notable advancements. The single address space avoids costly memory migrations between 
CPU and GPU memory and allows for different algorithms; the increase in memory allows for larger data 
sets on the GPU.  

Heterogeneous-compute Interface for Portability (HIP) is a programming language extension developed by 
AMD [7]. HIP is designed with a CUDA-like API to ease porting of existing codes which use a CUDA 
compiler. The LLNL compiler used for this port is the LLVM/Clang compiler with HIP extensions, provided 
by vendor partners Hewlett Packard Enterprises (HPE) and Advanced Micro Devices (AMD). Furthermore, 
HIP is the interface to the ROCm (Radeon Open Compute) platform which interacts with the AMD MI300A 
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APUs. Currently, we are using Clang version 17.0.6 with HIP extensions which support ROCm version 
6.2.1 on the El Capitan hardware.  

A typical run utilizes four MPI ranks per node. Each MPI rank uses HIP to target the parallelism inherent 
in the GPU, or OpenMP to access 24 CPUs. In practice, on the MI300A, the performance of a single GPU 
is superior to the use of 24 CPUs, thus the GPU parallelism is preferred. However, the ability to run a 
heterogeneous GPU and OpenMP code is a useful feature explored in the next sections.  

3. CODE DESIGN AND GENERAL MODIFICATIONS 

The Monte Carlo codes are quite flexible in their use of parallelism and algorithms and support history- and 
event-based tracking algorithms [6], controllable via a run time option. As the code may use either the GPU 
(via HIP) or the CPU (via OpenMP), a run time option to switch from the GPU to the CPU also exists. This 
flexibility to choose where to run a simulation (GPU or CPU) and the algorithm (event- or history-based) 
allows one to compare runs and to verify statistically equivalent results. 

The option to compile with GPU and OpenMP allows for codes to efficiently use OpenMP based libraries 
which are not ported to the GPU. In addition, the ability for the code to run kernels on the CPU within the 
Monte Carlo code itself provides a fallback when compiler robustness issues are encountered in a GPU 
kernel.  We can selectively remove individual kernels from the GPU until issues are addressed. 

The Monte Carlo codes use the single address space on the MI300A by using the memory allocation call 
‘hipMalloc’ for all memory which will be used on the GPU. The CPU may still access this memory as well, 
as the memory is single address space. Performance considerations involving memory location and caching 
levels favor the use of hipMalloc over standard C malloc for memory used in GPU kernels. The codes may 
use the LLNL Umpire memory pool manager [10], which reduces the actual number of hipMalloc, hipFree, 
and related system calls, improving overall run performance.  

In any type of parallel computing design (such as either OpenMP or GPU threads), contention for the same 
memory location or cache line leads to reduced performance. In Mercury and Imp, two common data 
structures exhibit such memory contention: tallies and the particle vault.   

We reduce tally memory contention by providing limited replication of the tallies. For an OpenMP capable 
code, the replication level is the number of OpenMP threads determined at run time. This replication allows 
for OpenMP parallelism to avoid memory contention. For the GPU, there is not enough memory to replicate 
the tallies for GPU threads; nevertheless, a limited replication reduces memory contention and improves 
performance. The number of tally replicas may be specified at run time based on observed performance 
results and memory utilization.  

The particle vault data structure stores particles to be processed for tracking or that have already been 
processed [6]. We are not currently replicating the particle vault data structure, and thus rely on atomic 
memory operations when accessing the particle vault.   An atomic operation is an indivisible operation on 
a memory location. The operation must complete without interruption and ensure the memory will not be 
read or written by any concurrent process or thread We had to account for atomic operations on the GPU 
on ATS-4, which will be discussed in Sec. 5. 

To enable code compilation with either CUDA or HIP, we wrap each call with a simple C++ define. The 
design of HIP to match the CUDA interface easily facilitated this approach. For instance, the source code 
to determine the number of GPU devices is GPU_GET_DEVICE_COUNT() which maps to either 
cudaGetDeviceCount() if using CUDA or hipGetDeviceCount() with HIP. 

We also updated our memory allocation abstraction to account for the HIP compiler. Prior to HIP, we had a 
set of memory management wrappers based on C++ defines. These defines could either allocate memory 
for the CPU or the GPU, with or without Umpire. However, this simplistic approach had issues compiling 
for the GPU device with early versions of the ROCm compiler.  We redesigned the memory allocation into 
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a set of templated memory allocation functions, which provided a general code improvement. The use of 
templated memory management functions allows for both CPU and GPU kernels to be properly generated 
by the ROCm compiler. 

4. CODE MODIFICATIONS TO IMPROVE CORRECTNESS AND ROBUSTNESS 

After the above modifications allowed the code to compile, we encountered runtime robustness issues with 
the GPU kernels. These issues do not manifest as traditional coding errors, but rather as memory run time 
faults with various ROCm specific HSA (Heterogeneous System Architecture) memory errors. Other than 
verifying which kernel encountered the memory error, debugging tools such as the rocgdb debugger were 
of limited use. 

After significant investigation and in collaboration with the vendor and compiler developers, we determined 
that the compiler itself was generating incorrect code. Several causes of incorrect code generation existed, 
but a primary one was the size of the stack in the GPU kernels. Monte Carlo codes are large and have deep 
call stacks, resulting in kernels with large ‘stack sizes’ which exceeded the expectations of the compiler 
developers and ultimately faulty code.   

A contributing factor to these mis-compiles is the use of relocatable device code (RDC) as part of the link 
time optimization (LTO) performed by the tool chain. When linking multiple libraries, many of which 
contain GPU coding, the CPU invokes device routines from multiple libraries. Additionally, GPU device 
code in one library may invoke device code from another library on the GPU. As an example, Mercury’s 
use of the General Interaction Data Interface (GIDI) library [11] for collision sampling and physics on the 
GPU is troublesome to the compiler. 

We worked around the code correctness errors in several ways. Although we cannot bypass the RDC, we 
could reduce the quantity of RDC calls by moving most of the GIDI kernels which were implemented in 
C++ source files into header files, which effectively inlined the HIP code into Mercury itself. This 
modification removed calls using function pointers with inlined lambda functions, allowing the compiler 
to better predict stack size and generate more correct code. 

Another code refactor involved the removal of recursion in device code. The ROCm tool chain at this time 
struggles to produce correct code when significant recursion is present, possibly due to the inability to 
predict the stack size needed. The code compiles but dies at run time with HSA memory errors. We have 
refactored much of our code to eliminate recursion, although this continues to be an ongoing effort.   

Code robustness issues were also encountered at higher (O2) optimization levels. Code runs again died with 
HSA memory errors. To work around this issue, we identified functions which contributed to HSA memory 
errors at higher optimizations. We then inserted C pragmas in the source code, before these functions, which 
informed the compiler to bypass optimizations of the problematic routines. This modification allows for 
optimizations in other parts of the code while avoiding the compiler produced errors during the optimization 
of certain functions.  

Up until the release of ROCm 6.2.1, we heavily relied on the above techniques to obtain a robust code. 
However, as we shared our efforts with the vendor, they made updates to the tool chain specifically for 
GPU code generation. By ROCm version 6.2.1, which was released in October 2024, we were able to 
remove most of the lower optimization pragmas and successfully run many simulations and tests.  

A final note code robustness and the AMD compiler tool chain as it is used by the Monte Carlo code is that 
we do not on believe we have addressed all robustness issues. While we have large test suites for both Imp 
and Mercury that run correctly on ATS-4, end users will have more complicated use cases which will require 
additional vetting. In collaboration with our vendor partners, we continue testing to identify and resolve 
mis-compiles and improve code robustness. Resolving these issues is a complicated problem.  The tool 
chain and associated run time libraries are used worldwide. As a result, any change to help Monte Carlo 
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codes with large kernels and deep call stacks needs to be checked with respect to correctness and 
performance implications in other codes in a multitude of organizations. 

5. CODE MODIFICATIONS TO IMPROVE MI300A PERFORMANCE 

Two of the larger performance issues encountered by the Monte Carlo codes on the MI300A were GPU 
stack-based kernel launch overhead and atomic operations.  

When a kernel requiring large stack-sizes is started on the GPU, there is a cost associated with this transfer 
of execution from the CPU to the GPU and allocation of stack memory. The costs are ensuring the 
executable code itself is loaded onto the GPU device and that required stack memory and data is available 
on the GPU. If this total launch overhead is too large, it can dominate the actual time spent executing the 
kernel and limit performance. On the Nvidia GPU, the overhead was in the range of 7 microseconds based 
on performance analysis done by our team. The average MI300A kernel launch latency is 6 microseconds 
without stack allocation, but as we profiled our initial port on the MI300A, we saw overheads of over 1 
millisecond for our larger tracking kernels. As we can easily launch hundreds of kernels per cycle, this large 
increase in launch overhead significantly limited performance. It is worth noting that the overhead of many 
of our smaller kernels, outside of particle tracking, had overhead of 6 microseconds. The determining factor 
was the size of the kernels – kernels with deeper stack sizes exhibited the 1 millisecond overheads. 

We worked with the vendor and compiler developers to address the launch overhead issue. Similar to the 
code robustness issues described above, much of the launch overhead issues have been improved with the 
release of ROCm version 6.2.1. However, depending on the run mode, the current launch gap can be as 
high as 150 microseconds or as low as 4 microseconds, leading to varying performance. While a significant 
improvement from earlier ROCm releases, we continue to work with the vendor and compiler developers 
to decrease the launch overhead across all run modes. 

We encountered contention-related performance issues with the use of atomic operators on the MI300A.  
Performance issues were particularly evident in event-based algorithms, but not all the GPU kernels in the 
event-based algorithms were slow – the common factor was the events which interacted with the particle 
vault data structure, and which relied on calls to atomicAdd(x,1), which increments a value by one. As 
noted in Sec. 3, we do not currently replicate the particle vault. The atomicAdd() operation on the MI300A 
out-of-the-box appears to be more sensitive to contention in comparison to Nvidia GPUs.  

We reduced overall atomic contention for calls such as atomicAdd(x,1) by implementing Warp Level 
Aggregations [12]. A warp is a group of GPU threads which perform the same instruction at the same time; 
on NVIDIA GPUs, the warp width is 32 lanes, while on AMD GPUs the warp width is 64 lanes. Within a 
warp, atomic updates to the same memory address must be serialized into separate memory transactions for 
each lane performing the atomic update, drastically reducing performance. Contention between warps on 
different compute units (CU) within a GPU may also reduce effective memory bandwidth. To address the 
former issue, we implemented warp level aggregates for our atomic increments. The function counts the 
number of lanes in a warp performing the increment, then a single lane performs the atomicAdd() using 
this value. The use of this augmentation increases the overall performance of event-based test cases by a 
factor of three. Other calls to atomicAdd(x,y) which add a number other than one exist in the code and have 
not yet been modified to use this technique, which may provide added benefit. 

As we continue porting the code to the MI300A, we are profiling the code and are considering if we can 
use different types of GPU memory or limited replication of certain fields in the particle vault to further 
improve GPU performance. We believe there are additional avenues for performance improvements. 
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6. MONTE CARLO MI300A PERFORMANCE ASSESSMENTS 

In this section, we present performance assessments on the CTS-2, ATS-2, and ATS-4 computer platforms 
for Imp and Mercury. These computers are detailed in Sec. 2. We compiled with the CUDA compiler NVCC 
11.8 on ATS-2, Clang 14 on CTS-2, and ROCm compiler 6.21 on ATS-4. 

6.1. Imp Crooked Pipe Results 

We used Imp version 5.43.0.mcs50.imp14 with the Crooked Pipe test problem [13], an idealized thermal 
photon transport test problem in which a boundary temperature source induces radiative heat flow down a 
pipe with a bend. Similar to [6], we ran Imp for 100 timesteps of variable size and calculated the temperature 
at five fiducial points in a 2D RZ mesh geometry with 5,000 zones, 1 domain, constant gray opacity, 
constant specific heat, and a 300 eV black body source. The geometry is shown in Fig. 1(a).   

  

 

 

	
(a)	Geometry	

	
(b)	Performance	

Figure 1. Crooked pipe test problem geometry and performance. 

We ran a saturation throughput study on a single node of each platform, using the algorithm which delivered 
the best results for each platform. For the GPU-based ATS-2 and ATS-4 machines, the event-based tracking 
algorithm provided the best performance. For CTS-2, the history-based tracking was more performant. We 
began with 210 (1,024) particles and increased the number of particles in powers of two. This study replicates 
the throughput study in paper [6] but with the current code and different hardware. We plotted segments-
per-second, which is the number of segments computed divided by the time spent tracking particles. A 
sequence of segments constitutes a Monte Carlo particle history.   

Figure 1(b) shows that throughput on CTS-2 saturates at 219 (524,288) particles achieving 187.8 million 
segments/second.  At M&C 2023 we reported [6] that the earlier commodity system CTS-1, with 36 Xeon 
E5-2695 CPUs, saturated at 217 (131,072) particles and achieved 37.6 million segments/second. The CTS-
2 system can handle larger workloads and increases performance 5.0x compared to CTS-1. 

Throughput on ATS-2 saturates at 227 (134,217,728) particles achieving 245.1 million segments/second.  At 
M&C 2023 we reported [6] that ATS-2 also saturated at 227 particles at 222.3 million segments/second. 
Modifications to the code for the port to ATS-4 have not degraded Imp performance on ATS-2. 

Throughput on ATS-4 continued to improve up to 229 (536,870,912) particles achieving 568.7 million 
segments/second.  For these runs, we stopped the throughput study on the ATS-4 at 229. 
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Comparing node to node performance, the throughput of ATS-4 achieves a 3.0x speedup over CTS-2, and 
more than 2.3x speedup over ATS-2. ATS-4 always outperforms ATS-2, while larger workloads - 223 
(8,388,608) particles per node for this test problem - are necessary to make effective use of the ATS-4 
MI300A compared to the CTS-2 Xeon CPUs.  

6.2. Mercury Godiva In Water Results 

We used Mercury version 5.43.0.mcs50.mer27 with the Godiva in Water test problem [14]. We used GIDI 
library version 3.31.26 with this build.  Godiva in Water is a Godiva critical sphere surrounded by water. 
We used Mercury to calculate the k-eigenvalue in a 3D Cartesian mesh octant geometry with 27,000 zones, 
1 domain, and continuous energy nuclear data. The geometry is shown in Fig. 2(a).   

	

	
	

(a)	Geometry	 	
(b)	Performance	

Figure 2. Godiva in water test problem geometry and performance. 

Similar to the Imp testing in section 6.1, we ran a saturation throughput study on a single node of each 
platform, using the algorithm which delivered the best results for each platform. We used event-based 
tracking for both ATS-2 and ATS-4, and history-based tracking for CTS-2. We computed segments-per-
second as defined in Sec. 6.1.  

Figure 2(b) shows that throughput on CTS-2 saturates at 217 (131,072) particles achieving 155.0 million 
segments/second.  At M&C 2023 we reported that the earlier commodity system CTS-1, saturated at 214 

(16,384) particles and achieved 27.8 million segments/second.  For this simulation, CTS-2 system can 
handle larger workloads and increases performance 5.6x compared to CTS-1 

Throughput on ATS-2 saturates at 226 (67,108,864) particles achieving 191.9 million segments/second.  At 
M&C 2023 we reported [6] that ATS-2 saturated at 227 (134,217,728) particles at 222.3 million 
segments/second. Modifications to both the GIDI library and Mercury necessary for the port to ATS-4 
resulted in a 13.6% performance degradation on ATS-2.    We analyzed the contributing factors by building 
the current Mercury code, but using the same build of GIDI used for the M&C 2023.  The results show that 
4% of the performance degradation is attributable to the GIDI refactor necessary for robust code on ATS-
4. The remaining 9% is attributable to code modifications in the Mercury source code. 

Throughput on ATS-4 continued to improve up to 229 (536,870,912) particles achieving 487.7 million 
segments/second.   Comparing node to node performance, the throughput of ATS-4 achieves a 2.5x speedup 
over ATS-2 and a 3.1x speedup over CTS-2.   
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6.3. Imp N210808 Results 

We used Imp version 5.43.0.mcs50.imp14 with the N210808 test problem based on the National Ignition 
Facility N210808 shot that was the first inertial fusion experiment to exceed the Lawson criterion for 
ignition [15]. The geometry represents the conditions of a partially imploded capsule and is shown in Fig. 
3(a). The test problem uses a 3D domain-decomposed mesh with 5,418,900 zones and 16 domains requiring 
particle communication across domain boundaries. A minimum of one thermal emission particle per zone 
implies at least 5.4 million particles per run. The simulation uses a time- and frequency-dependent photon 
source on the outer boundary. The test was run on four nodes of each platform, with a variable time step 
and 100 time steps. 

 

	
(a)	Geometry	

	
(b)	Performance	

Figure 3. N210808 test problem geometry and performance. 

We ran a saturation throughput study on four nodes of each platform, using the algorithm which delivered 
the best results for each platform. We used event-based tracking for both ATS-2 and ATS-4, and history-
based tracking for CTS-2. We tracked segments-per-second as defined in Sec. 6.1. Figure 3(b) presents the 
results. At 225 (33,554,432) particles, CTS-2 achieves 243.0 million segments/second, ATS-2 achieves 346.0 
million segments/second, and ATS-4 achieves 1060.0 million segments/seconds.  ATS-4 provides speedups 
of 3.1x vs. ATS-2 and 4.3x vs. CTS-2. 

Each cycle of the calculation is composed of multiple parts which includes initialization, tracking, and 
finalization routines related to the Monte Carlo simulation. Each cycle also includes calls to other libraries 
and MPI communication calls to send and receive particles across boundaries. While Imp has a load 
balancing algorithm, at this smaller scale run, load imbalance still exists resulting in processes waiting to 
receive particles many times within each cycle. An informative metric is the ratio of the time spent in 
‘Tracking’ vs. the total cycle time. At the lower particle count, this ratio is lower than at the higher particle 
count for which particle tracking dominates the cycle time. As the particle count increases, this ratio 
increases as does the segments per second.  These values are shown in Table I. To increase the performance 
of Imp and Mercury across a range of workloads, it is also important to improve the performance of coding 
outside of tracking.  
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Table I: ATS-4 Imp N210808 – Influence of Particle Count on Tracking Ratio and Segments/Sec 

	 Number	of	Particles	 223	 224	 225	 226	

	 Tracking	Ratio	 0.30	 0.40	 0.48	 0.65	

	 Segments	/	Second	 9.21x108	 9.45x108	 1.03x109	 1.04x109	
	

 

Another factor which impacts performance is the time step size. Shorter time steps result in less elapsed 
time and fewer collisions per GPU kernel launch. Since the N210808 test problem allows for a variable 
time step, we observe that within a single simulation, portions of the simulation with larger time steps 
exhibited a higher speedup than portions with a lower time step. As end users run simulations with a range 
of time steps, this also argues for continuing to improve the performance of coding outside of particle 
tracking. Table II shows the tracking ratio within a single run of 225 particles at various individual cycles 
from 1 to 100. As the time step increases from 1x10-13 to 5x10-12 seconds during the run, the tracking ratio 
increases, leading to improved performance as more work is performed per GPU kernel launch. 

Table II: ATS-4 Imp N210808 – Influence of Time Step on Tracking Ratio 

	 Cycle	 1	 25	 50	 75	 100	

	 Time	Step	 1.0x10-13	 9.8x10-13	 5.0x10-12	 5.0x10-12	 5.0x10-12	

	 Tracking	Ratio	
(cumulative)	

.05	 .15	 .34	 .44	 .48	

	

 

7. CONCLUSIONS AND FUTURE WORK 

The port of the LLNL Monte Carlo Imp and Mercury codes to the AMD InstinctTM MI300A APU, El 
Capitan architecture, and ROCm was more challenging than expected due primarily to the larger kernels 
and deep call stacks with the Monte Carlo kernels. We ported the code while the vendor was actively 
improving the ROCm compiler based on feedback from our code and many other projects at LLNL. This 
close collaboration benefited both the vendor and customer. While we have demonstrated measurable node 
to node speedups compared to Nvidia GPUs and Xeon based clusters, we believe there is still opportunity 
for performance improvements both inside and outside of the tracking portions of Monte Carlo transport 
codes. GIDI robustness and performance is of particular interest. We will continue to profile, identify 
bottlenecks, and refactor code to increase performance. Tool chain issues impacting performance (launch 
overhead) and robustness (runtime memory errors) remain which we are working to resolve in collaboration 
with HPE and AMD.  
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