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This talk describes our progress porting LLNL MC codes to GPUs

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Porting Production Code

M&C 2023 “Progress...” by Pozulp et al.
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We have significantly improved on the results in our M&C ’19 paper

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Porting Production Code

M&C 2019 “Status...” by McKinley et al.
M&C 2023 “Progress...” by Pozulp et al.
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Our M&C ’17 paper summarized an era of experimentation

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Experimentation Porting Production Code

M&C 2017 “...Research Efforts...” by Brantley et al.
M&C 2019 “Status...” by McKinley et al.
M&C 2023 “Progress...” by Pozulp et al.
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Shared infrastructure allowed us to port two codes simultaneously

5% 80%shared 15%

Imp Mercury

Imp ∪Mercury = 370,000 lines C++
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We compare two platforms: CTS-1 & Sierra

B B P P
V V V V

CTS-1 Node Sierra Node
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We devised a new abstraction for V100 (1/3)

PARFOR( i , N){ useIndex ( i ) ; }PARFOREND ( ) ;

#pragma omp p a r a l l e l fo rfo r ( i n t i = 0 ; i < N; i ++){ useIndex ( i ) ; }

auto lambda = [ = ] __host__ __dev ice__ ( i n t i ){ useIndex ( i ) ; } ;launchKernel ( lambda , N ) ;

x86
V100
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We devised a new abstraction for V100 (2/3)

PARFOR( i , N){ useIndex ( i ) ; }PARFOREND ( ) ;

#pragma omp p a r a l l e l fo rfo r ( i n t i = 0 ; i < N; i ++){ useIndex ( i ) ; }

auto lambda = [ = ] __host__ __dev ice__ ( i n t i ){ useIndex ( i ) ; } ;launchKernel ( lambda , N ) ;

x86
V100
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We devised a new abstraction for V100 (3/3)

PARFOR( i , N){ useIndex ( i ) ; }PARFOREND ( ) ;

#pragma omp p a r a l l e l fo rfo r ( i n t i = 0 ; i < N; i ++){ useIndex ( i ) ; }

auto lambda = [ = ] __host__ __dev ice__ ( i n t i ){ useIndex ( i ) ; } ;launchKernel ( lambda , N ) ;

x86
V100
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We implemented event-based tracking (1/4)

1.

2.

3.
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We implemented event-based tracking (2/4)
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We implemented event-based tracking (3/4)

1.

2.

3.

1.

2.

Thread A Thread B
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We implemented event-based tracking (4/4)

1.

2.

3.

1.

2.

Thread A Thread B
1.

2.

3.
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Thread A Thread B
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We build with link-time optimization (1/4)

Separate compilation Link-time optimization

TU #1 TU #2 TU #1 TU #2
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We build with link-time optimization (2/4)

Separate compilation Link-time optimization

TU #1 TU #2 TU #1 TU #2

Call Foo
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We build with link-time optimization (3/4)

Separate compilation Link-time optimization

TU #1 TU #2 TU #1 TU #2

Call Foo
Define Foo
• Do A
• Do B
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We build with link-time optimization (4/4)

Separate compilation Link-time optimization

TU #1 TU #2 TU #1 TU #2

Call Foo
Define Foo
• Do A
• Do B

• Do A
• Do B
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We ran two problems: Godiva in Water and Crooked Pipe (1/2)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48

Mercury - Godiva in Water
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We ran two problems: Godiva in Water and Crooked Pipe (2/2)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48

Mercury - Godiva in Water
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

Imp - Crooked Pipe
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We need 1000x more particles to saturate a Sierra node
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Event-based tracking and LTO provide substantial speedups (1/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
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Event-based tracking and LTO provide substantial speedups (2/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1SierraSierraSierra
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1SierraSierraSierra
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Event-based tracking and LTO provide substantial speedups (3/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 HistorySierra HistorySierra EventSierra Event
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 HistorySierra HistorySierra EventSierra Event
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Event-based tracking and LTO provide substantial speedups (4/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 History NoSierra History NoSierra Event NoSierra Event Yes
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 History NoSierra History NoSierra Event NoSierra Event Yes
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Event-based tracking and LTO provide substantial speedups (5/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 History No 6170Sierra History No 3744Sierra Event No 1085Sierra Event Yes 811
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 History No 2711Sierra History No 913Sierra Event No 555Sierra Event Yes 467
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Event-based tracking and LTO provide substantial speedups (6/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 History No 6170 6006Sierra History No 3744 3710Sierra Event No 1085 1052Sierra Event Yes 811 775
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 History No 2711 2334Sierra History No 913 836Sierra Event No 555 477Sierra Event Yes 467 395
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Event-based tracking and LTO provide substantial speedups (7/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 History No 6170 6006 167.113Sierra History No 3744 3710 167.113Sierra Event No 1085 1052 167.113Sierra Event Yes 811 775 167.113
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 History No 2711 2334 87.707Sierra History No 913 836 87.709Sierra Event No 555 477 87.706Sierra Event Yes 467 395 87.708
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Event-based tracking and LTO provide substantial speedups (8/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 History No 6170 6006 167.113 27.8Sierra History No 3744 3710 167.113 45.0Sierra Event No 1085 1052 167.113 158.8Sierra Event Yes 811 775 167.113 215.5
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 History No 2711 2334 87.707 37.6Sierra History No 913 836 87.709 104.9Sierra Event No 555 477 87.706 183.7Sierra Event Yes 467 395 87.708 222.3
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Event-based tracking and LTO provide substantial speedups (9/9)

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in
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▪ Idealized radiation transport test problem*
— 2D RZ geometry mesh (5k zones, 1 domain)
— Constant gray opacity, constant specific heat, 300 eV black body source

▪ 108 MC photons per time step, simulation run to 10-6 s with variable 
time step and maximum ∆t = 10-9 s (1,039 cycles)

▪ CTS-1: 36 CTS-1 Intel Xeon CPU cores

▪ ATS-2: 40 IBM P9 CPU cores or 4 Nvidia V100 GPUs

▪ Imp IMC GPU physics results in excellent agreement with CPU results

▪ 4 GPU event-based simulation exhibits a ~5X overall speedup 
compared to a CTS-1 node

We assessed Imp IMC thermal photon transport on Sierra using 
the Crooked Pipe test problem

Crooked Pipe

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 
UCRL-MI-143393 (2000)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 [run223] 36 cores 425.45 373.37 52.09

P9 [run224] 40 cores 571.28 (0.74X) 515.24 (0.72X) 56.03 (0.93X)

V100 – event-based [run226] 4 GPUs 86.79 (4.90X) 78.75 (4.74X) 8.04 (6.48X)

V100 – history-based [run225] 4 GPUs 112.86 (3.77X) 98.57 (3.79X) 14.28 (3.65X)

CTS-1 History No 6170 6006 167.113 27.8 1.000Sierra History No 3744 3710 167.113 45.0 1.619Sierra Event No 1085 1052 167.113 158.8 5.707Sierra Event Yes 811 775 167.113 215.5 7.745
System Algo LTO? TotalTime TrackingTime Segments Seg/s Speedup
CTS-1 History No 2711 2334 87.707 37.6 1.000Sierra History No 913 836 87.709 104.9 2.791Sierra Event No 555 477 87.706 183.7 4.888Sierra Event Yes 467 395 87.708 222.3 5.915
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Achieving 7.6x and 5.8x speedups required sustained porting effort

Total Runtime Speedup
FY18 FY19 FY21 FY22 FY23

Godiva in Water 0.47x 0.81x 4.43x 5.15x 7.61xCrooked Pipe 1.45x 1.99x 4.52x 4.90x 5.81x

Ongoing work includes continued Sierra GPU porting and El Capitan GPU porting.
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