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ABSTRACT

The Lawrence Livermore National Laboratory Monte Carlo Transport Project has made
progress porting production code to Nvidia Tesla V100 GPUs on the Sierra supercom-
puter. The Monte Carlo calculation speedups are now 7.6x for neutronics and 5.8x for
thermal photonics in node-to-node comparisons between Sierra and traditional large scale
x86 CPU-based compute platforms. We attribute a large portion of the speedups that we
achieved to the use of event-based tracking and better code generation.
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1. INTRODUCTION

The Lawrence Livermore National Laboratory (LLNL) Monte Carlo Transport Project develops
two production codes: Mercury, a Monte Carlo (MC) particle transport code [1], and Imp, an
implicit Monte Carlo (IMC) [2] thermal photon transport code [3]. The codes consist of about
240,000 lines of uncommented C++ source code (370,000 with comments), 80% of which is
shared, 15% of which is Mercury-specific, and 5% of which is Imp-specific. Mercury and Imp
are distributed- and shared-memory parallel using MPI+OpenMP and run in production on x86
servers. In 2018, LLNL sited the Advanced Technology System-2 (ATS-2) machine Sierra, a
4,320 node system with 2 IBM P9 sockets, 4 Nvidia V100 GPUs, 256 GB of dynamic random
access memory (DRAM), and 64 GB of high bandwidth memory (HBM) per node [4]. We started
porting production Monte Carlo code capabilities to the Sierra GPU architecture in late 2017.

Our goal is to run calculations on ATS-2 Sierra GPUs and assess their performance compared to a
Commodity Technology System-1 (CTS-1) system with 2 Intel Xeon E5-2695 v4 Broadwell sock-
ets and 128 GB of DRAM per node. CTS-1 is an example of the aforementioned “x86 servers”. At
M&C 2019 we reported a 0.81x node-to-node speedup for Mercury and a 1.99x speedup for Imp
[5]. Here at M&C 2023 we present a 7.61x speedup for Mercury and a 5.81x speedup for Imp.
We describe these results after describing our effort to achieve them. We also present a throughput
study demonstrating that Mercury and Imp need about 1000x more particles to saturate an ATS-2
Sierra node than they need to saturate a CTS-1 node.

Porting Monte Carlo transport codes to GPU architectures is an active area of research. Brown and
Martin [6] initially developed the “event-based” approach many years ago in porting Monte Carlo
transport algorithms to vector computer architectures. Bergmann and Vujic [7] wrote an event-
based code for Nvidia GPUs, and Bergmann et al. [8] demonstrated speedups. Bleile et al. [9]
ported a research code to Nvidia GPUs and compared event-based to history-based algorithms.
Hamilton et al. [10,11] have ported the Shift production Monte Carlo code to Nvidia GPUs. Choi
et al. [12] wrote a Monte Carlo code for Nvidia GPUs.
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2. DESIGN

The feature set of Mercury and Imp running on the V100 is nearly identical to the x86 production
feature set because we retained the original code beneath a new abstraction layer. Mercury and Imp
used hardcoded C++ iteration constructs, like for loops, which we replaced with C preprocessor
macros. When we target x86 the preprocessor substitutes the for statement and the original code
is recovered, whereas when we target the V100 the preprocessor substitutes a lambda function
definition followed by a cuda kernel launch (see Fig. 1).

#pragma omp parallel for
for (int i = 0; 1 < N; i4++)

x86 Ind S
PARFOR(i, N) { uselndex(i); }
{ uselndex(i); }
PARFOREND ( ) ; V100
0 auto lambda = [=] __host__ __device__(int i)

{ uselndex(i); };
launchKernel (lambda, N);

Figure 1: Single source, two architectures. The loop and the kernel execute the same logic.

We use double-precision floating point, Unified Memory (“cudaMallocManaged”), separate com-
pilation, recursive functions, and virtual functions. If we chose to write a new GPU code instead
of porting an existing CPU code, we would consider selectively using single-precision, we would
use device memory (“‘cudaMalloc’), and we would avoid separate compilation of device code as
well as recursive calls and virtual calls in device code. Our production code has many capabilities
and useful features (such as a flexible user-defined tally infrastructure) developed over more than
two decades of production use, but this advantage of usefulness may come at a disadvantage in
GPU performance compared to a code with fewer features, like a new code. We observed that of-
fering less device code to Nvidia’s nvce compiler reduced register and stack requirements, thereby
improving V100 performance. Less code also increases the chances that the code builds and runs.
The disadvantage of writing a new production code is verifying, validating, and maintaining it for
decades. The first line of Mercury source code was written more than 20 years ago.

We partially ameliorate the performance impact of Unified Memory through pooling using the
Umpire memory manager [13]. Pooling amortizes the expense of cudaMallocManaged which we
observed to be orders of magnitude slower than glibc malloc. We also reduce the cost of separate
compilation using device code link-time optimization, which we describe in Section 4.

3. EVENT-BASED TRACKING IMPLEMENTATION DETAILS

In 2019, our tracking algorithm used a history-based approach in which each GPU thread follows a
particle from birth to death. This big kernel covers about 100,000 lines of branching, latency-bound
code. The Nvidia nvcc compiler emits the maximum 255 registers per thread for the kernel, which
bounds the theoretical occupancy at about 12.5%, and resulted in an achieved occupancy of about
10%. We realized that we needed smaller kernels to address this limitation. This led to adding
event-based tracking, where small kernels chain together to handle a single tracked segment. Along
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the way, we redesigned our threading model so each thread would handle a particle instead of a
chunk of particles. We initially discovered event-based and history-based algorithms performed
similar on the GPU with the mini-app, ALPSMC [9]. Hamilton et al. reached similar conclusions
for multigroup Monte Carlo [10] but found the need to use event-based algorithms for continuous
energy Monte Carlo to obtain improved GPU performance [14].

In our event-based tracking, a group of particles, called a chunk, execute around 9 kernel launches
per segment. (A “segment” denotes each movement of a particle to an event, and a sequence of
“segments” constitutes a Monte Carlo particle history.) The chunk size is a user settable parameter
which greatly impacts performance on the GPU. Around 6 kernels are launched to find the distance
to the next event. The remaining kernels sample those events. The number of kernel calls per
segment varies by particle type and runtime options. For example, charged particles have more
potential events, and time-dependent calculations have an extra census event. The event-based
tracking algorithm reduced the number of registers per kernel launch, which did achieve higher
occupancy.

3.1. Changing the particleVault

Our original particle container, called particleVault, originally had a list of particles for processing,
processed, and extra memory that had not been deallocated yet. Particles were pulled from the
top of the processing list, went through many segments, and were placed in the processed list
unless removed from the problem. The cycle was finished once the processing list was empty.
New particles produced from variance reduction or collisions were placed at the bottom of the
processing list. The next cycle started by swapping the list pointers.

We changed our history-based routines to allow for a thread per particle, causing us to add a
processingNext list. Instead of new particles being put on the bottom of processing, they would
be put on the bottom of processingNext. Once processing was empty, processingNext would swap
particles with processing and continue. The cycle was done when processing and processingNext
were both empty. The history-based tracking algorithm is shown in Algorithm 1.

The event-based tracking operates on a chunk containing about 2 x 10° Monte Carlo particles.
The first series of kernel launches determine the event each particle will undergo. The chunk of
particles is moved the shortest distance and a separate vector of indices for each event is updated
for each particle scheduled for that event. If an event has non-zero entries in its index vector, a
kernel is launched that is the size of the number of particles participating in that event. At the end
of each segment, the tracked particles have either died or been copied to a new chunk. Chunks are
maintained in linked lists which may be swapped out until all particles have finished for the current
cycle. The event-based tracking algorithm is shown in Algorithm 2.

3.2. Attempts to improve event-based tracking

We attempted many strategies to improve the speed of event-based tracking. Early on we thought
that history-based tracking may be better when there are few particles left to process in a cycle. We
added an option that allows for event-based tracking to switch to history-based tracking when the
particle count was low enough, but we saw no improvement in performance with this change. In the
case where most particles make it to the next segment (e.g. scatter, facet crossing, energy boundary
crossing), we sought to avoid an extra copy by just re-submitting the kernel, which would skip
the few finished particles (e.g. captured, census, Russian Roulette). Early testing demonstrated
no benefit. We also tried a register ceiling using ——maxregcount to increase occupancy. This
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usually resulted in a break even or a slowdown. We had some success with writing “lite” versions
of routines with shallower call stacks. As an example, if no tallies are registered for an event, we
may call the lite version which has the tally routines templated out. We added a sidecar concept that
would just contain data needed for the duration of a segment such as the cross section sampled or
the facet crossed. This reduced the memory per particle which allowed us to run bigger problems,
but we saw no noticeable speed increase. We implemented a routine that would sort particles by
the cell they were in. This helped history-based tracking but not event-based tracking. We have
yet to look at sorting by cell and energy. We implemented mesh based variables that store data in
a contiguous array for some data over the geometry. This resulted in speedups in several routines
such as a cross section pre-computation routine that went from 17% of the runtime down to 0.1%.

We varied the chunk size to see where our performance peaked. For CTS-1, performance plateaus
at a chunk size of 10% to 10°. For ATS-2 Sierra, performance improves up to 2 x 10° and remains
high until 5 x 10° after which memory problems cause a decline. Bigger chunks amortize the
cost of kernel launch latency by providing more work per kernel launch (because a big chunk
contains more Monte Carlo particles than a small chunk). We also looked at launching kernels
asynchronously. There were two areas where this made sense: computing the distance to events
and executing the events. The distance to event had some ordering problems where distances from
one calculation may be used to speed up the next calculation. However, the execution of events
had no such issue. It resulted in a modest speedup of about 5%. The lack of a better speedup is
probably due to our low occupancy. The V100 can make memory-latency-bound codes memory-
bandwidth-bound, but only if the code achieves sufficient occupancy, which ours currently does
not.

Algorithm 1: History-Based Tracking Algorithm

Read in nuclear data

while cycles remain do

cyclelnit

while particleVault is not empty do

Pre-allocate memory

Sort particles by cell

parallel for particle in currentChunk in processing do

while particle is still active do

Compute distance to cell boundary, dCellBoundary
Sample distance to collision, dCollision

Compute distance to census, dCensus

Compute min (dCellBoundary, dCollision, dCensus)
Move particle to event site

case cellBoundary: update particle’s cell

case collision: sample rxn, new particles in processingNext or processed
case census: save particle in processed

Swap processing and processingNext pointers

cycleFinalize
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Algorithm 2: Event-Based Tracking Algorithm

Read in nuclear data

while cycles remain do

cyclelnit

while particleVault is not empty do

Pre-allocate memory

parallel for particle in currentChunk in processing do

L Compute distance to cell boundary, dCellBoundary

parallel for particle in currentChunk in processing do
L Sample distance to collision, dCollision

parallel for particle in currentChunk in processing do
L Compute distance to census, dCensus

parallel for particle in currentChunk in processing do
L Compute min (dCellBoundary, dCollision, dCensus)

parallel for particle in currentChunk in processing do
L Move particle to event site

parallel for particle in cellBoundaryChunk do
L update particle’s cell and copy to processingNext

parallel for particle in collisionChunk do
L sample rxn, new particles in processingNext or processed

parallel for particle in censusChunk do
L save particle in processed

Swap processing and processingNext pointers

C;/cleFinalize

4. CODE GENERATION IMPROVEMENTS

Building an executable requires compiling source code into object code and then linking the object
files into a single executable file. A toolchain is the software used for application development.
A toolchain includes a compiler and a linker and may also include utilities for inspecting binaries
and debugging. For example, in the cuda toolchain the compiler is nvcc and the linker is nvlink.

4.1. Compiler

The compiler reads the source file and all the headers it includes and all the headers included in the
headers (and so on) to form a translation unit (TU). The TU consists of definitions (e.g. a function
implementation), declarations (e.g. a function signature) and references (e.g. a function call). The
compiler performs optimizations on an intermediate representation (IR) before generating object
code and then optimizing the object code and emitting it in an object file. In order to generate
object code for a function call, the compiler needs the function declaration but not the definition,
which permits parallel compilation: each TU is independent of all the others and so all TUs may
be compiled simultaneously. This is known as separate compilation.
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4.2. Linker

The linker links all the object code to form the executable. Unlike the compiler, the linker needs
the definition for every reference - that is why the linker can fail with “undefined reference” errors.
The main job of the linker is reference resolution. At each function call there is a jump instruction
emitted by the compiler with a blank destination that needs to be replaced with the address of the
function definition. The linker determines the correct address. (We resolve references at build
time, which is called static linking. One can also resolve them at run time, which is called dynamic
linking *.) The linker does not perform optimizations.

4.3. Whole program optimization

The compiler optimizes every TU, but since the compiler operates on a single TU it cannot perform
cross-TU optimizations, such as inlining a function which is referenced in one TU but defined in
another. However, if one can fit an application into a single TU then this problem goes away. This
is known as a unity build, and it creates other problems which we will not enumerate here. Unlike
the compiler, the linker sees all the code, so the linker can perform cross-TU optimizations, also
known as whole program optimizations. When performed by the linker this is known as link time
optimization (LTO).

4.4. LTO in the cuda toolchain

The linker cannot optimize object code but it can optimize IR. Running nvce with the —~d1to flag
emits NVVM IR into the object file. Invoking nvcc on the objects along with —~d1to will cause
nvlink to perform LTO on the device code. This improves application runtime at the cost of linker
runtime. Today it takes 20 minutes for nvlink to link Mercury with LTO, thanks to the ptxas flag
-—fast—-compile, without which it takes 8 hours. Other challenges include:

* Stack overflows. Some calculations hang or die with various cuda errors, like “Warp Out-of-
range Address”, “illegal memory access”, and “unspecified launch failure.” Our code uses recur-
sion which means that the maximum stack size is not known until runtime. In practice this means

increasing cudaLimitStackSize and re-running until the calculation runs to completion.

* Build failures. Nvlink failed to link and output the LLVM error “invalid user of intrinsic instruc-
tion!” An expert at Nvidia provided a workaround by adding a variable to a class definition in our
code so that the class type did not match the signature of an unrelated compiler builtin function
in a different NVVM module.

* Miscompiles. Some calculations die with the error “illegal memory access”. We discovered that
adding the ptxas flag ——disable-optimizer—-constants fixes the problem. For the total
tracking time of our regression testing suites, the DOC flag causes the Mercury speedup to drop
11 percentage points from 1.34x to 1.23x and the Imp speedup to drop 3 percentage points from
1.28x to 1.25x.

* Sensitivity. The LTO performance numbers reported in this paper represent the current produc-
tion release of the code. Seemingly small code changes, such as adding a print statement, can
prevent inlining and unexpectedly reduce the LTO speedup. The development branch has lost
some LTO performance. We are working to understand and recover this performance.

*Some of our references cannot be resolved at build time due to late binding, for example virtual function references.
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None of these problems have stopped us from using LTO, and we expect LTO to continue to
improve as it has over the three years since Nvidia released it in June 2020. LTO reduces the
number of device functions that survived inlining from 938 to 390 in Mercury and 461 to 82 in
Imp. Of the 390 that remain in Mercury, 310 come from using a collision library in which we have
many virtual functions. A virtual function cannot be inlined.

4.5. ThinLTO in the LLVM toolchain

The maximum cuda LTO speedup of about 27% that we first reported in 2021 on Sierra [15], which
is now 36% (see Table 2), compares favorably with 6% observed on CTS-1 with LLVM’s ThinLTO
build of Mercury [16]. We attribute the difference to the relative cost of function call overhead on
the two architectures (higher on V100 than x86).

S. RESULTS

We compare calculations running on CTS-1 and ATS-2 Sierra for which we always run on one
node (see Section 1 for descriptions of the CTS-1 and ATS-2 Sierra node architectures). On CTS-1
we compiled with Intel icpc 19.1.0 and on Sierra with Nvidia nvee 11.7 using clang 14.0.5. We ran
version 5.34.0 of Mercury and Imp on two test problems. Godiva in Water [17] is a Godiva critical
sphere surrounded by water. We used Mercury to calculate the k-eigenvalue in a 3D Cartesian
mesh octant geometry with 27,000 zones, 1 domain, and continuous energy nuclear data. Crooked
Pipe [18] is an idealized radiation transport test problem in which a boundary temperature source
induces radiative heat flow down a pipe with a bend. We ran Imp for 100 timesteps of variable size
and calculated the temperature at five fiducial points in a 2D RZ mesh geometry with 5,000 zones,
1 domain, constant gray opacity, constant specific heat, and a 300 eV black body source.

Figure 2 shows the geometry for both problems. Table 1 shows how our GPU speedup has im-
proved over fiscal years (FY) since Sierra came online in 2018. The “speedup” in this table is the
ratio of the total runtime on CTS-1 and Sierra. We ran the FY23 calculations with 227 (about 134
million) particles.

We chose 2%7 particles based on a throughput study which determined 227 to be the saturation
point at which the maximum throughput is achieved. We began with 29 particles and increased
the number of particles in powers of two. We plotted segments-per-second, which is the number
of segments computed divided by the time spent tracking particles (a sequence of ‘“segments”
constitutes a Monte Carlo particle history). Figure 3 shows that throughput on a CTS-1 node
saturates at only 2'7 particles whereas an ATS-2 Sierra node saturates at about 227 particles, so
about 1000x more work is required to saturate Sierra.

Table 2 and Table 3 show how the new system (Sierra), the new algorithm (Event), and the new
build (LTO) all contribute to the overall speedup. For example, LTO improved our Mercury
speedup by 7.745/5.707=1.357 or about 36%. The “speedup’ in this table is the ratio of segments-
per-second. The 7.61x and 5.81x speedups in the FY23 column of Table 1 are slightly less than
the 7.75x and 5.92x speedups in Table 2 and Table 3 because the former use total runtime and the
latter only tracking time. Table 2 and Table 3 show that tracking time is over 80% of Imp runtime
and over 90% of Mercury runtime.

6. CONCLUSIONS AND FUTURE WORK

After six years of intermittent porting, we have achieved a 7.61x speedup for neutronics and 5.81x
for thermal photonics in node-to-node comparisons between the ATS-2 Sierra supercomputer and
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Figure 2: Problem geometry for (a) Mercury and (b) Imp calculations.

Table 1: Speedups from FY18 to FY23 (calculations not completely consistent year-to-year)

Total Runtime Speedup

Resources CPU / GPU FY18 FY19 FY21 FY22 FY23
Godiva in Water CTS-1/Sierra 36 CPU cores/4 GPUs 0.47x 0.81x 4.43x 5.15x 7.61x
Crooked Pipe  CTS-1/Sierra 36 CPU cores/4 GPUs 1.45x 1.99x 4.52x 4.90x 5.81x
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Figure 3: Throughput for (a) Mercury and (b) Imp calculations.
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Table 2: Speedups for Mercury Godiva in Water calculation by system, algorithm, and LTO

System  Tracking LTO? Total  Tracking Segments Seg/s Speedup
Algorithm Runtime (s) Time (s)  (billions) (millions/s)

CTS-1 History No LTO 6170 6006 167.113 27.8 1.000

Sierra History No LTO 3744 3710 167.113 45.0 1.619

Sierra Event No LTO 1085 1052 167.113 158.8 5.707

Sierra Event LTO 811 775 167.113 215.5 7.745

Table 3: Speedups for Imp Crooked Pipe calculation by system, algorithm, and LTO

System  Tracking LTO? Total  Tracking Segments Seg/s Speedup
Algorithm Runtime (s) Time (s)  (billions) (millions/s)

CTS-1 History No LTO 2711 2334 87.707 37.6 1.000

Sierra History  No LTO 913 836 87.709 104.9 2.791

Sierra Event No LTO 555 477 87.706 183.7 4.888

Sierra Event LTO 467 395 87.708 222.3 5.915

traditional large scale x86 systems like CTS-1 for the LLNL production Mercury and Imp codes
on the Godiva in Water and Crooked Pipe problems, respectively. Future work includes ongoing
GPU performance improvement investigations and porting to El Capitan, a future LLNL system
that will have AMD EPYC processors and AMD Radeon Instinct GPUs [19].
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