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ABSTRACT
The implicit Monte Carlo (IMC) equations approximate the photon absorption and re-
emission process with an effective scattering event. Calculation runtimes are dominated
by photons traversing optically thick media, in which the IMC photons undergo numerous
effective scattering events separated by relatively short paths. We rectify this problem by
employing a transport-corrected diffusion approximation in a hybrid method that uncon-
ditionally eliminates scattering events everywhere in phase space. We demonstrate that
the computational cost of our scheme is independent of the mean free path.
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1. INTRODUCTION

Implicit Monte Carlo (IMC) [1] is a popular algorithm for solving the thermal radiative transfer
(TRT) equations. IMC is a linearization of TRT that contains an “effective scattering” term which
approximates the photon absorption and re-emission process: if an IMC photon undergoes an effec-
tive scattering event, that means that the physical photon it represents was absorbed and re-emitted.
IMC is most expensive in optically thick highly-absorbing media, in which IMC photons undergo
numerous effective scattering events separated by relatively short paths between collisions. The
IMC photons have long life histories, which results in extended calculation runtimes.

The earliest solution for improving IMC calculation runtimes was the Random Walk (RW) method
of Fleck and Canfield [2], which requires that certain conditions are satisfied. Spatial and temporal
refinement, which increase cost, dampen the RW speedup because the conditions for its use are
less likely satisfied in smaller zones and with shorter timesteps. More recent solutions, like implicit
Monte Carlo Diffusion (IMD) [3], replace transport zones with diffusion zones at spatial locations
at which the diffusion solution is appropriate. The calculation in the remaining transport zones
proceeds as before, whereas the solution in the diffusion zones is determined by solving a linear
system arising from a discretization of the diffusion equation using a Monte Carlo technique

A similar problem in deterministic transport is the slow convergence of source iteration in the
aforementioned optically thick highly-absorbing media. Solutions to slow iterative convergence
typically rely on using some diffusion-based method along with the transport solve [4]. One class
of solution is the Variable Eddington Factor (VEF) method, also known as Quasidiffusion [5]. VEF
is a moment method in which the diffusion equation includes a nonlinear transport-correction. A
second moment method (SMM) which includes a linear transport correction was later proposed by
Lewis and Miller [6].

Chacón et al. [7] surveyed the 60 year history of moment methods, demonstrated moment method
acceleration of IMC, and acknowledged the presence of statistical noise caused by the combina-
tion of Monte Carlo (MC) methods with moment methods. Unlike Chacón et al., we use SMM,
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which is a different moment method than the method that they used, but we believe that our so-
lution resembles their solution in many important ways. For example, our choice to combine MC
with SMM also introduces statistical noise. A naı̈ve usage of MC with SMM involves numerical
differentiation of a noisy quantity, which can amplify the noise. The authors in Hammer, Park,
and Chacón [8] avoid this issue by using a deterministic particle method that is similar to the
method of characteristics. In contrast, our strategy to address the noise amplification, which we
hope to present in a follow up publication, will employ a sophisticated MC tally which avoids the
differentiation. In this paper, we examine the naı̈ve usage of MC with SMM in order to quantify
performance of the scheme with respect to the mean free path, and assess the effect of noise am-
plification on solution quality.

Our solution also resembles that of Cooper and Larsen [9], where MC transport is interrupted by
a VEF solve used to compute weight windows. Unlike Cooper and Larsen, we use SMM instead
of VEF and we use it to eliminate effective scattering events rather than compute weight windows.
Our solution is a “hybrid” method in that we use a stochastic method (MC) to solve a modified
transport equation and a deterministic method to solve the moment equations. We demonstrate its
value by showing that 1) the cost of the scheme is independent of mean free path and 2) the scheme
is accurate in the diffusion limit. We verify our scheme by showing that 3) the numerical solution
has an error like C0√

N
+ C1h, where N is the number of IMC photons, h is the mesh width, and the

constants C0 and C1 are independent of the mean free path.

2. METHOD

2.1. Derivation of the SMM equations

The following derivation of the SMM equations is a reproduction of the derivation by Olivier [10]
using the same notation and algebra. Just like Olivier, we use a monoenergetic, steady-state, fixed-
source, linear transport equation with isotropic scattering as a simplified model for a single time
step of TRT:

Ω · ∇ψ + σtψ =
σs
4π

∫
ψ dΩ′ + q , x ∈ D (1a)

ψ(x,Ω) = ψ̄(x,Ω), x ∈ ∂D and Ω · n < 0 . (1b)

Here, x ∈ Rdim and Ω ∈ S2 are the spatial and angular variables, ψ(x,Ω) is the angular flux,
D ⊂ Rdim the spatial domain and ∂D its boundary and n the outward unit normal to the boundary,
σt(x) and σs(x) are the total and scattering macroscopic cross sections, q(x,Ω) is the fixed-source,
and ψ̄(x,Ω) the inflow boundary function. The zeroth and first angular moments of the transport
equation are

∇ · J + σaϕ = Q0 , (2a)

∇ ·P + σtJ = Q1 , (2b)

where σa(x) = σt(x) − σs(x) is the absorption macroscopic cross section, Q0 =
∫
q dΩ and

Q1 =
∫

Ωq dΩ are the zeroth and first angular moments of the fixed-source and ϕ, J , and P are
the zeroth, first, and second angular moments of the angular flux. This is an unclosed system of
1 + 3 = 4 equations (because Eq. (2a) is a scalar equation and Eq. (2b) is a vector equation) and
1 + 3 + 6 = 10 unknowns (because ϕ is a scalar, J is a vector, and P is a symmetric tensor). Close



Implicit Monte Carlo Acceleration

the system using P = T + 1
3
Iϕ where I is the identity matrix to get

∇ · J + σaϕ = Q0, (3a)
1

3
∇ϕ+ σtJ = Q1 −∇ ·T, (3b)

where

T =

∫
Ω⊗Ωψ dΩ− 1

3
I

∫
ψ dΩ (3c)

is the correction tensor. To derive the boundary condition, let J±n =
∫

Ω·n≷0
Ω · nψ dΩ denote the

partial currents and use them to express the net current, then manipulate the expression

J · n = J−n + J+
n

= 2J−n + (J+
n − J−n )

= 2J−n +

∫
|Ω · n|ψ dΩ

= 2Jin +B ,

(4)

where Jin =
∫

Ω·n<0
Ω ·n ψ̄ dΩ is the incoming partial current computed from the inflow boundary

function, ψ̄, and B(ψ) =
∫
|Ω · n|ψ dΩ. Substitute B = β + 1

2
ϕ, where

β =

∫
|Ω · n|ψ dΩ− 1

2

∫
ψ dΩ (5)

is the boundary factor, to get the SMM boundary condition

J · n =
1

2
ϕ+ 2Jin + β . (6)

The SMM equations are thus

∇ · J + σaϕ = Q0 , x ∈ D , (7a)

1

3
∇ϕ+ σtJ = Q1 −∇ ·T , x ∈ D , (7b)

J · n =
1

2
ϕ+ 2Jin + β , x ∈ ∂D . (7c)

We solve the second-order form, found by eliminating the current:

−∇ · 1

3σt
∇ϕ+ σaϕ = Q0 −∇ ·

Q1

σt
+∇ · 1

σt
∇ ·T . (8)

The iteration, depicted in Fig. 1, consists of a transport solve with a scattering source computed
using the scalar flux from the moment solve ϕ, and a moment solve with a transport correction
computed using the angular flux from the transport solve ψ. SMM replaces a single IMC step with
multiple steps which are cheaper because the MC photons do not undergo scattering events.
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Ω · ∇ψ + σtψ =
σs
4π
φ+ q

∇ · J + σaφ = Q0
1
3∇φ+ σtJ = Q1 −∇ ·T

T(·) =
∫
Ω⊗Ω (·) dΩ− 1

3

∫
(·) dΩ

φ

Figure 1: SMM iteration, reproduced from Olivier [10].

2.2. Implementation details

We use MC for the transport solve, so the correction tensor T has MC noise, and in Eq. (8)
we compute two derivatives of T. How to avoid the amplification of MC noise in T caused by
differentiation is a research question which we are investigating. The boundary factor β also has
MC noise but we do not differentiate β. We use three tallies to compute T and β. Let T̂ = P̂− 1

3
Iφ̂

and β̂ = K̂ − 1
2
φ̂ be MC estimators for T and β, where

φ̂ =
1

V

∑

i

diwi , P̂ =
1

V

∑

i

Ωi ⊗Ωidiwi , and K̂ =
1

V

∑

i

|Ωi · n|diwi (9)

are path-length estimators, so the sum is over paths of length di in the volume V , and path i

is traversed by an MC photon with weight wi moving in the direction Ωi. Thus, T̂ and β̂ are
piecewise-constant tallies computed in each zone, and each boundary zone, respectively, of a tally
mesh. The tally mesh is a uniform tessellation of the spatial domain D. The MC photons do
not undergo scattering events. Instead, we include the effects of scattering during sourcing, in
which the fixed-source q(x,Ω) is augmented by the scattering source ϕ(x)σs/4π. We enforce the
global requirement that the sum of the MC photon weights

∑N
i wi must equal the integral of the

scattering-and-fixed source
∫ ∫

(ϕσs/4π + q) dΩ dx by enforcing it locally within each zone of
the source mesh. The source mesh is a uniform tessellation of D × S2 phase space. The sourcing
algorithm is:

i. uniformly sample x and Ω for each MC photon,

ii. computeNx×NΩ volume integrals Φij of the scattering-and-fixed source on the source mesh,
where Nx and NΩ are the number of spatial and angular zones in the source mesh, and i and
j are the spatial and angular zone indices,

iii. set the weight of each MC photon in zone ij to Φij/N
ij , where N ij is the number of MC

photons sourced into zone ij.

We use bilinear interpolation in step ii to interpolate the moment flux ϕ to the source mesh zone
centers, which is where we evaluate the scattering-and-fixed source function in a 1-point integration
rule to compute the volume integrals. Our sourcing algorithm produces equal weight intra-zone
MC photons, but inter-zone MC photon weights may differ. A more sophisticated sourcing al-
gorithm, or a post-sourcing global variance reduction step like splitting high-weight particles and
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Russian rouletting low-weight particles, would provide a more uniform weight distribution. We
track MC photons until they get absorbed by the medium or escape through the spatial domain
boundary ∂D.

We use finite difference (FD) for the moment solve, so we need to interpolate the zonal T̂ and
β̂ tallies to the FD nodes in order to form the right-hand side of Eq. (8). We simply assign tally
values to FD nodes without averaging, but we could use spatial averaging, as depicted in Fig. 2,
and we plan to investigate this improvement in the future. Our discrete moment system is sparse
but also small, so we invert with LU factorization. If we were solving bigger problems we could
use a robust iterative solver like algebraic multigrid pre-conditioned conjugate gradient because
the system is symmetric positive definite.

We think that the same process which the nuclear engineering community uses for controlling
eigenvalue iteration would work well for the iteration depicted in Fig. 1. That is, discard a few
“initial” iterates, average subsequent iterates, and terminate the iteration once the average satisfies
a convergence criterion involving the averaged iterates. Here, we simply terminate after a fixed
number of iterations and use the final iterate as the solution. The fixed number of iterations is an
empirical, problem-dependent quantity that we choose to be at least three and never more than
twenty.

a b c

d
e

f

g h i

T̂0 T̂1

T̂2 T̂3

(a) Tallies

T̂2, T̂2, T̂3

T̂0, T̂0, T̂1

T̂0, T̂0, T̂1

(b) No averaging

T̂2,
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2
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2
, 1
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i=1
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2
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2
, T̂1

(c) Averaging

Figure 2: Interpolation of the zonal MC estimator T̂ to the finite difference nodes

3. RESULTS

We refer to our scheme as Nose to distinguish it from IMC. Nose is an abbreviation of “No scatter-
ing events”. Nose gives two values for the scalar flux, one from the transport solve and one from
the moment solve. We refer to these as the “MC Flux” and the “SMM Flux”, respectively. Both
should converge to the same solution in the limit as we refine the mesh and increase the number of
MC particles. We use uniform meshes for the source mesh, tally mesh, and moment mesh in which
the width of each zone is h = 1/Z where Zdim is the number of zones and the spatial domain is
the unit cube. We ran 1D calculations with one spatial coordinate and one angular coordinate, and
2D calculations with two spatial coordinates and two angular coordinates.

To exercise the thick diffusion limit, we ran a 1D fixed-source problem with vacuum boundaries
and uniform material properties set to σt = 1

ε
, σa = ε, σs = 1

ε
− ε, and q = ε with ε ∈ (0, 1] as in

[11]. Figure 3 demonstrates that Nose converges to the diffusion solution as ε→ 0 even when the
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mesh is large relative to the mean free path. Figure 3 also demonstrates how Nose gives two values
for the scalar flux, as previously mentioned. Figure 4 shows that Nose runtime is independent of ε
whereas IMC runtime, which is O(1/ε2), explodes as ε→ 0.

(a) MC Flux φ̂(x) for N = 106 (b) SMM Flux ϕ̂(x) for N = 106

Figure 3: Flux in the thick diffusion limit for 106 photons and 8 spatial zones

Figure 4: Runtime for thick diffusion limit calculation

To verify our method, we use the method of manufactured solutions (MMS). In 1D, we set the
MMS solution to ψ = (1 + µ+ µ2) sinπx, and in 2D we set it to

ψ = α + Ω · β + Ω⊗Ω : Θ, α = sinπx sin πy, β =

(
α
α

)
, Θ =

(
α α
α α

)
. (10)

We set σa = σs = 1. We seek the hypothesized error of C0√
N

+C1h. We test the first term by fixing
h small and increasing N . We test the second term by fixing N large and decreasing h. Figure 5
shows that the error has the hypothesized dependence on N and h in 1D but not in 2D. The 1D
calculation error in Fig. 5 (a) flatlines after 410 because N is big enough that C0√

N
< C1h.
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(a) Error as N increases in 1D (b) Error as h decreases in 1D

(c) Error as N increases in 2D (d) Error as h decreases in 2D

Figure 5: The MC Flux error as N increases or h decreases

We think that the noise in T̂ is causing the 2D errors to exceed the hypothesized values. As
previously mentioned, how to avoid the amplification of noise in T̂ caused by differentiation is a
research question which we are investigating. Why is 1D unaffected? We attribute the resilience of
1D to operator symmetry. The div-grad and div-div operators on the left and right sides of Eq. (8),
respectively, are different operators in 2D. In 1D they are both second-order ordinary derivatives.
We think that this symmetry may avert the noise amplification.

4. CONCLUSIONS AND FUTURE WORK

We implemented a method for accelerating MC transport that unconditionally eliminated scattering
events everywhere in phase space which we call Nose (“No scattering events”). We presented a
thick diffusion limit study showing that Nose runtime is independent of ε whereas IMC runtime is
O(1/ε2), which explodes as ε→ 0. We presented a verification study showing that Nose converges
to an MMS solution with the hypothesized error of C0√

N
+ C1h in 1D, whereas the error in 2D

exceeds the hypothesis. We are investigating the effect of noise on the 2D solution and testing ways
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to ameliorate it. We are also pursuing mathematical arguments for statements 1, 2, and 3 from the
introduction and we are testing more sophisticated moment system discretizations. Future work
includes demonstrating boundary sources and heterogeneity, and perhaps anisotropic scattering.
Finally, we are interested in comparisons to RW as well as other acceleration schemes like IMD.
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