Fast Solvers for the Finite Element Method

Brian Muldoon & Mike Pozulp
May 9, 2022

Abstract

We solve arbitrarily ill-conditioned linear systems arising from a finite element discretization
of a Poisson problem in linear solid mechanics theory using hypre. We compare iterative solver
convergence and walltimes as condition number increases. We find that hypre’s algebraic
multigrid preconditioner, used with hypre’s conjugate gradient solver, performs best.

Biography

Brian Muldoon and Mike Pozulp are PhD students at UC Berkeley in the Mechanical Engineering
Department and the Applied Science & Technology Graduate Program, respectively.

1 Introduction

The elastic deformation of a solid under stress is a process that can be modeled using Poisson’s
equation. The linear system that arises from a finite element discretization can be ill-conditioned,
especially if the body is composed of multiple dissimilar materials. A foam and aluminum body,
as in Fig. 1, will be more ill-conditioned than one made of steel and aluminum. The large differ-
ence in stiffness between these two materials leads to the stiffness matrix arising in finite element
discretizations to have a highly distributed eigenvalue spectrum. The conditioning of the stiffness
matrix can have a significant effect on the performance of iterative solvers for systems of algebraic
equations.

To solve the linear system of equations for the elastic deformation problem, we use Lawrence
Livermore National Laboratory’s hypre, an open-source library of fast solvers and preconditioners
for sparse linear systems [1]. The objective of the project is to explore the iterative solvers avail-
able within hypre and quantify their performance on the aforementioned computational mechanics
problem.

2 FEM Discretization of Elastic Deformation

Consider a 1 dimensional body © = (0, L) with boundary 02 = I', where I, is a portion of the
boundary where Dirichlet boundary conditions are applied. The strong form of the 1D Poisson
equation for modeling uni-axial beam extension is stated as follows: given Dirichlet boundary

foam aluminum

Figure 1: Adjacent foam and aluminum. The elastic deformation of this body will be ill-conditioned
relative to a body made of a single material, or two similar materials, like steel and aluminum.

conditions @ over part of the boundary and material property data F'A find u(x) such that,

EA% =f for ze€(0,L)
w(L) =@ (1)
u(0) =

Given the strong form, a weak counterpart is derived by integrating over the domain of a finite
element ¢ and integrating by parts to arrive at

paded o - / wfdQ. @)

Qe dz dx o,

The weak form objective is then to find v € H*(Q) in which u(0) = 0, u(L) = u given w € H}(Q)
such that (2) is satisfied. The function w € H}(Q) is a test function with square integrable
first derivative which vanishes on the boundary of the domain. The weak form requires that the
admissible function v be complete up to polynomial order p = 1. Therefore, linear finite element
interpolation functions have sufficient approximating power of the solution in €2. We represent the
solution of (2) using a finite basis of linear interpolation functions. The solution with an element
domain ¢ using linear interpolation functions takes the form,

2
ut =uj = Z Nfug (3)
i=1

where NY is the finite element interpolation function for node ¢ of the element and u§ the corre-
sponding nodal degree of freedom. The interpolation functions satisfy the orthogonality condition
of a nodal basis such that
1 j=1
Ni(x;) = { (4)

0 j#i
Assuming a Bubnov-Galerkin approximation, we take the same finite element interpolation functions

to construct a basis for the admissible test functions w = wj = 2?21 Nfwg. Substituting these
results into the weak form gives,

2

2
dN; dNj

i=1 j=1

~0 (5)

Since w; are arbitrary, each equation above must independently be zero, yielding the system of
equations for each element,
(K [u] = [F*] (6)

where [K€] is the element stiffness matrix, [u°] is the element degree of freedom vector, and [F€] is
the applied force vector for an element. The stiffness matrix is given by,

K = / BABY[Bdr (7)

where

B = [Bf] Bs]]. [Bf]=[%] (8)

dzx

Integration of the element arrays is performed exactly using 2 point Gaussian quadrature. Assembly
of the element arrays within the finite element mesh establishes the global system of equations,

[K][u] = [F]. (9)

Assume that active degrees of freedom are given by u, and prescribed Dirichlet boundary condition
degrees of freedom are given by #. The system of equations then admits a block decomposition of

the form,

K K| |ug . Fy

|:K21 Kyl |u]| |F]’ (10)
Solving for the active degrees of the freedom in the system subject to Dirichlet boundary conditions
requires solution of the following linear system of equations,

Kllua = F1 - K12'L_L. (11)

The conditioning of the K7; matrix in equation (11) is dependent on the problem size and material
properties of the mechanical system. Also, the dimensionality of the stiffness matrix depends upon
the number of finite elements used to construct a piecewise representation of the solution over the
domain.

3 Condition Number Analysis

We are interested in understanding the behavior of the stiffness matrix condition number as a
function of various parameters. Referring to Fig. 2, as the number of elements in the finite element
mesh for the 1D example is increased, the condition number of the stiffness matrix also increases.
Additionally, consider the case in which the left side of an elastic bar is given material properties
EA; and the right side material properties EA,. Define the material ratio « = EAy/EA; as the
ratio of the right side stiffness with respect to the left side stiffness. The condition number of the
active part of the stiffness matrix adjusted for step-size Ki; - h is provided in Fig. 2 as a function
of element count and material ratio. As expected, the condition number of the stepsize adjusted
stiffness matrix increases monotonically with both number of elements and material ratio. However,
the condition number of the system increases more rapidly as the problem size grows with increasing
number of elements.

Performing the same analysis as above on the 2D Poisson equation gives analogous relationships
for the condition number as a function of material ratio and problem size. The stiffness matrix
emanating from the 2D Poisson finite element discretization is given by,

10° 4
109 4
104
10° 4 1
= 2 = "
< : <
2107 5 <10
103 J
102 4
, . 102 4 : : . . :
10! 10? 10° 10! 10? 10° 10* 10°
Number of Elements, N Material Ratio, «

Figure 2: Condition number of the step-size adjusted stiffness matrix (K - h) from the 1D problem
as a function of number of elements (left) and material ratio (right).

K= [[BYD7 B0 (12)

where the material constitutive matrix [D¢] arises from a linearly elastic material model. The
components of the constitutive matrix for each element are governed by the Lamé parameters A, u
such that,
A+ 2p A 0
D] = A A+2u 0] . (13)
0 0 Ju

Thus in the 2D case, we define the material ratio o such that for the Lamé parameters of the left
(A1, p1) and right (Mg, o) parts of the domain,

A
=22 L= (14)
At 1
This material ratio scaling leads to bisected material properties in the body with flexible and stiff
properties on the left and right halves of the domain, respectively. The array [B¢] for the 4 node
quadrilateral element is given by,

ON;
vy 0

[B]=[Bf Bs B Bj], [Bi=|0 %= (15)
Ox2 Ox1

The results in Fig. 3 demonstrates how the deformed configuration of the 2D elastic body changes
with respect to increasing material ratio. The material ratio is defined as the ratio of the material
properties in the right half (magenta) of the domain with respect to the left half (cyan). Increasing
the material ratio monotonically increases the condition number of the stiffness matrix, similar to
the 1D example in Fig. 2. The deformed mesh for systems with large material ratios exhibit small
deformations in the right half of the domain, relative to the soft material on the left. We use the
material ratio to arbitrarily increase the condition number of the linear system of equations that
we solve using hypre.

(a) a=1 (b) =10 (c) =100

Figure 3: Extension of an elastic body for various material ratio subject to boundary conditions
u(0,y) = 0 and u(1,y) = @ = 0.1. The dashed line indicates the reference length of the material prior
to extension. N = 40 elements per side for each system. Left half Lamé parameters A\; = 1.59E11,

4 Stiffness Matrix Analysis

The stiffness matrix arising from the finite element discretization is symmetric and positive semi-
definite. The symmetry of the stiffness matrix is apparent from the symmetry of the element
array emanating from (12), considering that the constitutive matrix [D€| is symmetric for a linearly
elastic isotropic material. Additionally, for illustrative purposes, consider a 5 x 5 finite element mesh
composed of 25 bilinear quadrilateral elements. Referring to Fig. 4, the sparsity structure colormap
arising from this discretization shows that the system is symmetric. A half bandwidth of 11 was
measured for the 54 x 54 stiffness matrix arising from the 5 x 5 mesh. Approximately 23% of the
entries are non-zero. The stiffness matrix is highly sparse with a narrow bandwidth. The positive
semi-definite quality of the stiffness matrix is apparent from the eigenvalue spectrum, shown in
Fig. 4b. Upon removal of the rows and columns associated with the Dirichlet boundary conditions,
the rigid body modes resulting in zero eigenvalues have been suppressed. Thus, all eigenvalues of
the stiffness matrix are non-negative and the matrix is positive semi-definite.

5 Iterative Solvers Using hypre

We use hypre, a library of fast solvers and preconditioners for sparse linear systems [1]. hypre
has four different problem description interfaces: Structured-Grid, Semi-Structured-Grid, Finite
Element, and Linear-Algebraic (“IJ”). Each hypre solver and preconditioner supports a subset of
the four interfaces. We use the 1J interface to run multiple hypre solvers and preconditioners, which
we describe below.

(a) Conjugate Gradient (cg): The CG algorithm [2] chooses ;, which minimizes ||rg||4-1, the
A~ norm of the residual at iteration k. CG assumes that A is symmetric and positive definite
and so A defines a norm ||r||4-1 = (rTA~1r)1/2.

(b) Biconjugate Gradient Stabilized (bicgstab): The BiCGStab algorithm [3] is a variation
on CG which does not require A to be symmetric.

= | LS %\4’
(] L} r1.0 ~<
! (] :.E.El: i g§ 5
-'. nm .'_ tos T
] -qu. - g
..' ." to.0 LEOT
[| bf u
l. :l':< u L

lell

2.0

15

T
L

x 101!

.
Cee,
®oee
oooooooooo

0 10 20 30 10 50
Mode Number, j

(a) Sparsity diagram for 5 x 5 F.E. mesh (b) Eigenvalue spectrum of the stiffness matrix

Figure 4: Stiffness matrix sparsity plot and eigenvalue spectrum for the 5 x 5 element mesh. Note:
the colormap in (a) indicates the value of the matrix entries.

(c)

(h)

6

Algebraic Multigrid (amg): The AMG algorithm [4] is a variation on the multigrid algo-
rithm which does not require information about the discretization grid. Both algorithms use
coarsening to convert high-frequency noise in the solution estimate to low-frequency noise,
which iterative methods like Jacobi iteration can smooth more efficiently. Multigrid needs
the solution grid for interpolation whereas AMG interpolates using only the equations in the
linear system.

Generalized Minimum Residual (gmres): The GMRES algorithm [5] chooses x) which
minimizes ||rg|l2. GMRES is a variation on MINRES which does not require A to be sym-
metric.

Loose Generalized Minimum Residual (Igmres): The LGMRES algorithm [6] is a vari-
ation on GMRES that attempts to accelerate GMRES convergence by disrupting the cyclic

pattern of directions of the residual vectors at the end of each restart cycle of restarted GM-
RES.

Flexible Generalized Minimum Residual (flexgmres): The FlexGMRES algorithm [7]
is a variation on GMRES that allows changes in the preconditioner at every step.

Hybrid (hybrid): hypre’s “hybrid” solver assumes a strongly diagonally dominant system,
and begins iterating a diagonally scaled Krylov solver without preconditioning. If the conver-
gence rate of the solver falls below a threshold, the algorithm switches to a preconditioned
Krylov solver. The solver and preconditioner are arbitrary, but we used hypre’s default, which
is CG preconditioned using AMG.

Algebraic Multigrid Preconditioned Conjugate Gradient (amg-cg): Use hypre’s CG
solver with hypre’s AMG as the preconditioner.

Results

Convergence for a 40-by-40 element system subject to two different material ratios o = 1, 100 may
be seen in Fig. 5. The walltimes for each of the methods is given in Table 1.

6

10° 10°
— cg — cg
——— bicgstab ——— bicgstab
10714 — amg 10714 — amg
—— gmres
—— lgmres
—— flexgmres
hybrid
—— amg_cg

—— gmres
10724 || —— Igmres 10724
— flexgmres
hybrid
—— amg_cg

10734 10-34

10744 10-44

Relative residual
Relative residual

1075 4 10-5 4

107° 4 1076 4

-7 4
10 10-7 4

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration number Iteration number

(a) a=1 (b) o = 100

Figure 5: Convergence of hypre solvers for 40-by-40 element system with material ratio o = 1
and a = 100. AMG-preconditioned CG converged in the fewest iterations. GMRES, AMG, and
FlexGMRES did not converge after 3300 iterations for &« = 1. Only AMG-preconditioned CG and
Hybrid converged for o = 100.

solver setup_walltime solve_walltime total_walltime iterations time_per_iter
lgmres 0.000371 21.876 21.876371 1673 0.013076
cg 0.000035 25.726 25.726035 1769 0.014543
bicgstab 0.000067 31.747 31.747067 1150 0.027606
hybrid 0.000007 38.315 38.315007 654 0.058586
amg_cg 0.647910 54.632 55.279910 374 0.147807
solver setup_walltime solve_walltime total_walltime iterations time_per_iter
hybrid 0.000006 64.036 64.036006 784 0.081679
amg_cg 0.930680 78.745 79.675680 421 0.189253
lgmres 0.000226 99.137 99.137226 6119 0.016202
cg 0.000045 115.690 115.690045 7298 0.015852
bicgstab 0.000055 143.580 143.580055 4440 0.032338

Table 1: Solver walltimes in seconds. The top table is for a = 1 and the bottom for e = 100. The
tables are sorted by “total_walltime” which is the sum of “setup_walltime” and “solve_walltime”.
The “iterations” column is the number of iterations required to converge. “time_per_iter” is “to-
tal_walltime” divided by “iterations”. We ran on an Intel Xeon E5-2695 v4 machine. All calculations
were serial. We used MPI _Wtime () to collect walltimes.

7 Discussion

Referring to Fig. 5, the convergence rates of BICGSTAB, LGMRES, and CG were negatively
impacted when the material ratio was increased for the system due to increased ill-conditioning.
The GMRES, AMG, and FLEXGMRES methods underperformed their counterpart methods by
converging to a relative residual on the order of 10~ after 3300 iterations for both material ratio

cases. The relative residual achieved by the C'G' method after 1000 iterations was on the order of
1075 for both a = 1, 100, however the o = 100 case required an additional 1500 iterations to achieve
a relative residual of similar order as the a = 1 system. The AMGCG and HYBRID methods had
superior convergence compared to all other methods, but AMGCG slightly outperformed HYBRID
in the sense of achieving the lowest residual in the fewest number of iterations. Using AMG to
precondition improved the convergence of C'G for both material ratio cases by reducing the total
number of iterations required to convergence.

Table 1 shows the solver walltimes. For o = 1, the un-preconditioned solvers required more
iterations to converge, but less walltime. At o = 100 the preconditioned solvers not only required
fewer iterations to converge, but also less walltime. The walltime per iteration is higher for the
preconditioned solvers.

8 Software and Hardware

We used the following software
e CPython 3.10.1

— NumPy 1.21.5
— Matplotlib 3.5.1

e Hypre 2.24.0
— Clang 13.0.0

We wrote the FEM discretization and plotting code in Python. We wrote the code that calls hypre
to solve the linear system in C. We compiled our C code and hypre at -02. The C code reads
A using HYPRE IJMatrixRead and b using HYPRE IJVectorRead from files written by our Python
code. The C code writes the solution z of the linear system Az = b using HYPRE_IJVectorPrint.
Our Python code reads x from the file and plots the solution, which is the deformed mesh. We ran
on an Intel Xeon E5-2695 v4 machine. All calculations were serial.

References

[1] R D Falgout and U M Yang. hypre: A library of high performance preconditioners. Furopean
Conference on Parallel Processing, 2331 LNCS(PART 3):632-641, 2002.

[2] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J Res
NIST, 49(6):409-436, 1952.

[3] H. A.van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of
nonsymmetric linear systems. STAM Journal on Scientific and Statistical Computing, 13(2):631—
644, 1992.

[4] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix equa-
tions. In D. J. Evans, editor, Sparsity and its Applications, pages 257-284 (of x + 338), pub-
CAMBRIDGE:adr, 1984. pub-CAMBRIDGE.

[5] Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
7(3):856-869, 1986.

6] A. H. Baker, E. R. Jessup, and T. Manteuffel. A technique for accelerating the convergence of
restarted gmres. SIAM Journal on Matriz Analysis and Applications, 26(4):962-984, 2005.

[7] Youcef Saad. A flexible inner-outer preconditioned gmres algorithm. SIAM Journal on Scientific
Computing, 14(2):461-469, 1993.

9 Project Contributions

Brian Muldoon developed the 1D and 2D Poisson equation finite element discretization codes, and
created methods for input/output of data from Python to hypre formats. Mike Pozulp developed
the C code that calls hypre. Both added content to the report.

boom. cpp Mon May 09 11:08:44 2022 1
#include "boom.hpp"

#include <stdio.h>
#include <string.h>
#include <sys/stat.h>

#include "HYPRE.h"

#include "HYPRE_IJ mv.h"
#include "HYPRE_parcsr_ls.h"
#include "mpi.h"

#define MAX_NUM_ITER 10000

typedef void (*SolveFunction) (const HYPRE_ParCSRMatrix ¥*,
const HYPRE_ParVector *, HYPRE_ParVector *,
double, uint8_t, double *, double *);

void strip_suffix(const char *filename, char *truncated) {
// REMOVE the .00000 suffix, so A.mij.00000 becomes A.mij, which is
// what the hypre’s read function use.
// For more details see the definition in HYPRE_ IJMatrix.c
size_t length = strnlen(filename, MAX_ STRING_LENGTH) ;
strncpy (truncated, filename, length);
truncated[length - 6] = "\0’;
}

void read_matrix (const char *filename, HYPRE_IJMatrix *ij_matrix,
HYPRE_ParCSRMatrix *parcsr_matrix) {
char truncated[MAX_STRING_LENGTH];
strip_suffix(filename, truncated);
hec (HYPRE_IJMatrixRead (truncated, MPI_COMM_WORLD, HYPRE_PARCSR, ij_matrix));
hec (HYPRE_IJMatrixGetObject (*ij_matrix, (wvoid **)parcsr_matrix));
}

void read_vector (const char *filename, HYPRE_IJVector *ij_vector,
HYPRE_ParVector *par_vector) {
// REMOVE the 0000 suffix to read it, so IJ.out.b.0000 becomes IJ.out.b
// For more details see the definition in HYPRE IJMatrix.c
char truncated[MAX_STRING_LENGTH];
strip_suffix(filename, truncated);
hec (HYPRE_IJVectorRead (truncated, MPI_COMM_WORLD, HYPRE_PARCSR, ij_vector));
hec (HYPRE_IJVectorGetObject (*ij_vector, (wvoid **)par_vector));
}

void create_x_vector (HYPRE_TIJVector *ij_x, HYPRE_ParVector *par_x, int jlower,
int jupper) {
hec (HYPRE_IJVectorCreate (MPI_COMM_WORLD, jlower, jupper, ij_x));
hec (HYPRE_IJVectorSetObjectType (*ij_x, HYPRE_PARCSR)) ;
hec (HYPRE_IJVectorInitialize (*ij_x));
hec (HYPRE_IJVectorAssemble (*1ij_x));
hec (HYPRE_IJVectorGetObject (*ij_x, (void **)par_x));
}

void print_run_info (int num_iterations, double final_ res_norm) {
printf ("\n");

(
printf ("Iterations = %d\n", num_iterations);
printf ("Final Relative Residual Norm = %e\n", final_res_norm);
printf ("\n");

}

void solve_cg(const HYPRE_ParCSRMatrix *parcsr_A, const HYPRE_ParVector *par_b,
HYPRE_ParVector *par_x, double convergence_tolerance,
uint8_t verbosity, double *setup_time, double *solve_time) {

boom. cpp Mon May 09 11:08:44 2022 2
// Solve using CG

HYPRE_Solver solver;
hec (HYPRE_ParCSRPCGCreate (MPI_COMM_WORLD, &solver));
hec (HYPRE_PCGSetMaxIter (solver, MAX_NUM_ITER)); // max iterations
hec (HYPRE_PCGSetTol (solver, convergence_tolerance)); // conv. tolerance
hec (HYPRE_PCGSetTwoNorm (solver,
1)); // use the two norm as the stopping criteria

if (verbosity) {

hec (HYPRE_PCGSetPrintLevel (solver, 2)); // print solve info

hec (HYPRE_PCGSetLogging (solver, 1)); // needed to get run info later

}

double start = MPI_Wtime () ;

hec (HYPRE_ParCSRPCGSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime ();

hec (HYPRE_ParCSRPCGSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;

double final_res_norm;

hec (HYPRE_PCGGetNumIterations (solver, &num_iterations));

hec (HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm));
print_run_info(num_iterations, final_res_norm);

hec (HYPRE_ParCSRPCGDestroy (solver));
}

void solve_bicgstab (const HYPRE_ParCSRMatrix *parcsr_A,
const HYPRE_ParVector *par_b, HYPRE_ParVector *par_x,
double convergence_tolerance, uint8_t verbosity,
double *setup_time, double *solve_time) ({
// Solve using BiCGStab

HYPRE_Solver solver;
hec (HYPRE_ParCSRBiCGSTABCreate (MPI_COMM_WORLD, &solver));
hec (HYPRE_BiCGSTABSetMaxIter (solver, MAX_NUM_ITER)); // max iterations
hec (HYPRE_BiCGSTABSetTol (solver,
convergence_tolerance)); // conv. tolerance
if (verbosity) {
hec (HYPRE_BiCGSTABSetPrintLevel (solver, 2)); // print solve info
hec (HYPRE_BiCGSTABSetLogging (solver,
1)); // needed to get run info later

}

double start = MPI_Wtime () ;

hec (HYPRE_ParCSRBiCGSTABSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime () ;

hec (HYPRE_ParCSRBiCGSTABSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;

double final_res_norm;

hec (HYPRE_BiCGSTABGetNumIterations (solver, &num_iterations));

hec (HYPRE_BiCGSTABGetFinalRelativeResidualNorm(solver, &final_res_norm));
print_run_info (num_iterations, final_res_norm);

hec (HYPRE_ParCSRBiCGSTABDestroy (solver)) ;
}

void solve_amg (const HYPRE_ParCSRMatrix *parcsr_A, const HYPRE_ParVector *par_Db,

boom. cpp Mon May 09 11:08:44 2022 3

HYPRE_ParVector *par_x, double convergence_tolerance,
uint8_t verbosity, double *setup_time, double *solve_time) {
// Solve using AMG

HYPRE_Solver solver;
hec (HYPRE_BoomerAMGCreate (&solver));

if (verbosity) {
hec (HYPRE_BoomerAMGSetPrintLevel (
solver, 3)); /* print solve info + parameters */
}
hec (HYPRE_BoomerAMGSetOldDefault (
solver)); /* Falgout coarsening with modified classical interpolaiton */
hec (HYPRE_BoomerAMGSetRelaxType (solver,
3)); /* G-S/Jacobi hybrid relaxation */
hec (HYPRE_BoomerAMGSetRelaxOrder (solver, 1)); /* uses C/F relaxation */
hec (HYPRE_BoomerAMGSetNumSweeps (solver, 1)); /* Sweeps on each level */
hec (HYPRE_BoomerAMGSetMaxLevels (solver, 20)); /* maximum number of levels */
hec (HYPRE_BoomerAMGSetTol (solver,
convergence_tolerance)); /* conv. tolerance */
hec (HYPRE_BoomerAMGSetMaxIter (solver, MAX_NUM_ITER));

double start = MPI_Wtime();

hec (HYPRE_BoomerAMGSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime ();

hec (HYPRE_BoomerAMGSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;

double final_res_norm;

hec (HYPRE_BoomerAMGGetNumIterations (solver, &num_iterations));

hec (HYPRE_BoomerAMGGetFinalRelativeResidualNorm(solver, &final_res_norm));
print_run_info (num_iterations, final_res_norm);

hec (HYPRE_BoomerAMGDestroy (solver));
}

void solve_gmres (const HYPRE_ParCSRMatrix *parcsr_A,
const HYPRE_ParVector *par_b, HYPRE_ParVector *par_x,
double convergence_tolerance, uint8_t wverbosity,
double *setup_time, double *solve_time) {
// Solve using GMRES

HYPRE_Solver solver;
hec (HYPRE_ParCSRGMRESCreate (MPI_COMM_WORLD, &solver));
hec (HYPRE_GMRESSetMaxIter (solver, MAX_NUM_ITER)) ; // max iterations
hec (HYPRE_GMRESSetTol (solver, convergence_tolerance)); // conv. tolerance
if (verbosity) {

hec (HYPRE_GMRESSetPrintLevel (solver, 2)); // print solve info

hec (HYPRE_GMRESSetLogging (solver, 1)); // needed to get run info later
}

double start = MPI_Wtime();

hec (HYPRE_ParCSRGMRESSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime ();

hec (HYPRE_ParCSRGMRESSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;
double final_res_norm;
hec (HYPRE_GMRESGetNumIterations (solver, &num_iterations));

boom. cpp Mon May 09 11:08:44 2022 4

}

hec (HYPRE_GMRESGetFinalRelativeResidualNorm(solver, &final_res_norm));
print_run_info (num_iterations, final_res_norm);

hec (HYPRE_ParCSRGMRESDestroy (solver)) ;

void solve_lgmres (const HYPRE_ParCSRMatrix *parcsr_A,

}

const HYPRE_ParVector *par_b, HYPRE_ParVector *par_x,
double convergence_tolerance, uint8_t verbosity,
double *setup_time, double *solve_time) ({

// Solve using LGMRES

HYPRE_Solver solver;
hec (HYPRE_ParCSRLGMRESCreate (MPI_COMM_WORLD, &solver));

hec (HYPRE_LGMRESSetMaxIter (solver, MAX NUM_ITER)) ; // max iterations
hec (HYPRE_LGMRESSetTol (solver, convergence_tolerance)); // conv. tolerance
if (verbosity) {

hec (HYPRE_LGMRESSetPrintLevel (solver, 2)); // print solve info
hec (HYPRE_LGMRESSetLogging (solver, 1)); // needed to get run info later

}

double start = MPI_Wtime () ;

hec (HYPRE_ParCSRLGMRESSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime () ;

hec (HYPRE_ParCSRLGMRESSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;

double final_res_norm;

hec (HYPRE_LGMRESGetNumIterations (solver, &num_iterations));

hec (HYPRE_LGMRESGetFinalRelativeResidualNorm(solver, &final_res_norm));
print_run_info(num_iterations, final_res_norm);

hec (HYPRE_ParCSRLGMRESDestroy (solver));

void solve_flexgmres (const HYPRE_ParCSRMatrix *parcsr_A,

const HYPRE_ParVector *par_b, HYPRE_ParVector *par_x,
double convergence_tolerance, uint8_t verbosity,
double *setup_time, double *solve_time) {

// Solve using FlexGMRES

HYPRE_Solver solver;
hec (HYPRE_ParCSRF1lexGMRESCreate (MPI_COMM_WORLD, &solver));
hec (HYPRE_FlexGMRESSetMaxIter (solver, MAX NUM_ITER)); // max iterations
hec (HYPRE_F1lexGMRESSetTol (solver,
convergence_tolerance)); // conv. tolerance
if (verbosity) {
hec (HYPRE_FlexGMRESSetPrintLevel (solver, 2)); // print solve info
hec (HYPRE_FlexGMRESSetLogging (solver,
1)); // needed to get run info later

}

double start = MPI_Wtime () ;

hec (HYPRE_ParCSRF1lexGMRESSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime ();

hec (HYPRE_ParCSRFlexGMRESSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;
double final_res_norm;

boom. cpp Mon May 09 11:08:44 2022 5

hec (HYPRE_FlexGMRESGetNumIterations (solver, &num_iterations));
hec (HYPRE_FlexGMRESGetFinalRelativeResidualNorm(solver, &final_res_norm));
print_run_info(num_iterations, final_res_norm);

hec (HYPRE_ParCSRF1lexGMRESDestroy (solver));
}

void solve_hybrid (const HYPRE_ParCSRMatrix *parcsr_A,
const HYPRE_ParVector *par_b, HYPRE_ ParVector *par_x,
double convergence_tolerance, uint8_t verbosity,
double *setup_time, double *solve_time) ({
// Solve using Hybrid

HYPRE_Solver solver;
hec (HYPRE_ParCSRHybridCreate (&solver));
hec (HYPRE_ParCSRHybridSetDSCGMaxIter (solver,
MAX_NUM_ITER)); // max iterations
hec (HYPRE_ParCSRHybridSetPCGMaxIter (solver,
MAX_NUM_ITER)); // max iterations
hec (HYPRE_ParCSRHybridSetTol (solver,
convergence_tolerance)); // conv. tolerance
if (verbosity) {
hec (HYPRE_ParCSRHybridSetPrintLevel (solver, 2)); // print solve info
hec (HYPRE_ParCSRHybridSetLogging (solver,
1)); // needed to get run info later

}

double start = MPI_Wtime () ;

hec (HYPRE_ParCSRHybridSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime () ;

hec (HYPRE_ParCSRHybridSolve (solver, *parcsr_A, *par_b, *par_x));
*solve_time = MPI_Wtime () - start;

int num_iterations;

double final_res_norm;

hec (HYPRE_ParCSRHybridGetNumIterations (solver, &num_iterations));

hec (HYPRE_ParCSRHybridGetFinalRelativeResidualNorm (solver,
&final_res_norm));

print_run_info (num_iterations, final_res_norm);

hec (HYPRE_ParCSRHybridDestroy (solver));
}

void solve_amg_cg (const HYPRE_ParCSRMatrix *parcsr_A,
const HYPRE_ParVector *par_b, HYPRE_ ParVector *par_x,
double convergence_tolerance, uint8_t wverbosity,
double *setup_time, double *solve_time) {
// Solve using AMG-preconditioned CG

// CG solver
HYPRE_Solver solver;
hec (HYPRE_ParCSRPCGCreate (MPI_COMM_WORLD, &solver));
hec (HYPRE_PCGSetMaxIter (solver, 1000)); // max iterations
hec (HYPRE_PCGSetTol (solver, convergence_tolerance)); // conv. tolerance
hec (HYPRE_PCGSetTwoNorm(solver,
1)); // use the two norm as the stopping criteria

if (verbosity) {

hec (HYPRE_PCGSetPrintLevel (solver, 2)); // print solve info

hec (HYPRE_PCGSetLogging (solver, 1)); // needed to get run info later

}

// AMG preconditioner

boom. cpp Mon May 09 11:08:44 2022 6

HYPRE_Solver precond;
hec (HYPRE_BoomerAMGCreate (&precond)) ;
if (verbosity) {
hec (HYPRE_BoomerAMGSetPrintLevel (precond,
1)); // print amg solution info
}
hec (HYPRE_BoomerAMGSetCoarsenType (precond,
hec (HYPRE_BoomerAMGSetOldDefault (precond)) ;

6));

hec (HYPRE_BoomerAMGSetRelaxType (precond, 6)); // Sym G.S./Jacobi hybrid
hec (HYPRE_BoomerAMGSetNumSweeps (precond, 1));

hec (HYPRE_BoomerAMGSetTol (precond, 0.0)); // conv. tolerance zero

hec (HYPRE_BoomerAMGSetMaxIter (precond, 1)); // do only one iteration!

// Set the PCG preconditioner

hec (HYPRE_PCGSetPrecond (solver, (HYPRE_PtrToSolverFcn)HYPRE_BoomerAMGSolve,
(HYPRE_PtrToSolverFcn) HYPRE_BoomerAMGSetup,
precond)) ;

// Now setup and solve!
double start MPI_Wtime () ;

hec (HYPRE_ParCSRPCGSetup (solver, *parcsr_A, *par_b, *par_x));
*setup_time = MPI_Wtime () - start;

start = MPI_Wtime ();

hec (HYPRE_ParCSRPCGSolve (solver, *parcsr_A, *par_b, *par_x));

*solve_time MPI_Wtime () — start;

// Get run information

int num_iterations;

double final_res_norm;

hec (HYPRE_PCGGetNumIterations (solver, &num_iterations));

hec (HYPRE_PCGGetFinalRelativeResidualNorm(solver, &final_res_norm));

print_run_info (num_iterations, final_res_norm);

// Destroy solver and preconditioner
hec (HYPRE_ParCSRPCGDestroy (solver));
hec (HYPRE_BoomerAMGDestroy (precond)) ;

int file_is_missing(const char *filename, struct stat *stat_buffer) {
int status stat (filename, stat_buffer);
if (status != 0) {

}

void print_usage (int argc,
const char *myname

}

return status *

fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,
fprintf (stderr,

|
fprintf (stderr,

"The file %s does not exist\n", filename);

_1;

char ***argv) {

*argv[0];

"usage: %s A b solver verbosity\n\n", myname);
"A is the coefficient matrix\n");

"b is the right-hand side\n");

"solver is one of the following\n");
"verbosity=0 quiet, verbosity=1 print residuals\n");
] \tamg_cg\n]) ;

"\thybrid\n") ;

"\tflexgmres\n") ;

"\tlgmres\n") ;

fprintf (stderr, "\tgmres\n");
fprintf (stderr, "\tamg\n");
fprintf (stderr, "\tbicgstab\n");
fprintf (stderr, "\teg\n");
fprintf (stderr, "examples: \n");

fprintf (stderr,

"$s A.hij.00000 b.hij.00000 amg_cg 1\n", myname);

boom. cpp Mon May 09 11:08:44 2022 7

fprintf (stderr, "%$s A.hij.00000 b.hij.00000 gmres 0\n", myname) ;

}

SolveFunction parse_args (int argc, char ***argv, char **A_filename,

char **b_filename, char **solvername,
uint8_t *verbosity) {
if (argc < 5) {
print_usage (argc, argv);
exit (-1);
}

*A_filename = (*argv) [1];
*pb_filename = (*argv) [2];
*solvername = (*argv) [3];
*verbosity = (uint8_t)atoi ((*argv) [4]);

struct stat stat_buffer;
int missing_files = 0;
missing_files += file_is_missing(*A_filename, &stat_buffer);
missing_files += file_is_missing(*b_filename, &stat_buffer);
if (missing_files != 0) {

exit (-1);
}

SolveFunction solve_function;

if (0 == strncmp(*solvername, "amg_cg", MAX STRING_LENGTH))
solve_function = solve_amg_cg;

} else if (0 == strncmp (*solvername, "hybrid", MAX_STRING_LENGTH))
solve_function = solve_hybrid;

} else if (0 == strncmp(*solvername, "flexgmres", MAX_ STRING_LENGTH))
solve_function = solve_flexgmres;

} else if (0 == strncmp(*solvername, "lgmres", MAX_STRING_LENGTH))
solve_function = solve_lgmres;

} else if (0 == strncmp(*solvername, "gmres", MAX_ STRING_LENGTH)) {
solve_function = solve_gmres;

} else if (0 == strncmp(*solvername, "amg", MAX STRING_LENGTH)) {
solve_function = solve_amg;

} else if (0 == strncmp(*solvername, "bicgstab", MAX STRING_LENGTH))
solve_function = solve_bicgstab;

} else if (0 == strncmp(*solvername, "eg", MAX STRING_LENGTH)) {
solve_function = solve_cg;

} else {
fprintf (stderr, "solver %s not recognized\n", *solvername);

print_usage (argc, argv);
exit (-1);

}

return solve_function;

}

int main (int argc, char **argv) ({
char *A_filename;
char *b_filename;
char *solvername;
uint8_t verbosity;
SolveFunction solve_function = parse_args (

{

{

argc, &argv, &A_filename, &b_filename, &solvername, &verbosity);

initialize (&argc, &argv);

HYPRE_TIJMatrix ij_A;

HYPRE_ParCSRMatrix parcsr_A;

read_matrix (A_filename, &ij_A, &parcsr_A);
hec (HYPRE_IJMatrixPrint (ij_A, "A.out"));

HYPRE_TIJVector ij_b;

{

{

boom. cpp Mon May 09 11:08:44 2022 8

HYPRE_ParVector par_b;
read_vector (b_filename, &ij_b, &par_Db);
hec (HYPRE_IJVectorPrint (ij_b, "b.out"));

int jlower;
int jupper;
hec (HYPRE_IJVectorGetLocalRange (ij_b, &jlower, &jupper));

HYPRE_TIJVector ij_x;
HYPRE_ParVector par_x;
create_x_vector (&ij_x, &par_x, Jjlower, jupper);

double convergence_tolerance = le-7;

double setup_time = 0;

double solve_time = 0;

(*solve_function) (&parcsr_A, &par_b, &par_x, convergence_tolerance,
verbosity, &setup_time, &solve_time);

printf ("setup_time solve_time\n");

printf("%.4e %.4e\n", setup_time, solve_time);

char solutionname[MAX_STRING_LENGTH];

snprintf (solutionname, MAX_STRING_LENGTH, "x_%s.out", solvername);
hec (HYPRE_IJVectorPrint (ij_x, solutionname)) ;

finalize () ;

boom. hpp Mon May 09 11:08:44 2022 1

#include <stdio.h>

#include "HYPRE_utilities.h"
#include "mpi.h"

#define mec(status) mpi_error_check(status, __ FILE__ , _ LINE_);
#define hec(status) hypre_error_check(status, __FILE_ , _ LINE_);

#define MAX_ STRING_LENGTH 1024

void mpi_error_check (int status, const char *file, int line) {
if (status == MPI_SUCCESS) {
return;
}
char message[MAX_STRING_LENGTH];
int length;
MPI_Error_string(status, message, &length);
fprintf (stderr, "MPI error %d: %s %s %d\n", status, message, file, line);
exit (status);

}

void hypre_error_check (int status, const char *file, int line) {
if (status == 0) {
return;
}
char message[MAX_ STRING_LENGTH];
HYPRE_DescribeError (status, message);
fprintf (stderr, "Hypre error %d: %s %s %d\n", status, message, file, line);
exit (status);

}

void initialize(int *argc, char ***argv) ({
mec (MPI_Init (argc, argv));
hec (HYPRE_Init ());

}

void finalize () {
mec (MPI_Finalize());
hec (HYPRE_Finalize());

