
LLNL-TR-823775

Enhancements supporting IC
usage of PEM libraries on
next-gen platforms

D. F. Richards, B. S. Ryujin, N. Barton, S. Bastea, B. Beauchamp, B. Beck, D.
Beckingsale, R. Blake, P. Brantley, P. Brown, J. Burmark, R. Carson, E. Chen, M.
Collette, S. Dawson, L. Fried, G. Gert, J. Grondalski, J. Gyllenhaal, B. Hall, R.
Haque, B. Isaac, M. Katz, A. Kunen, I. Kuo, H. Le, J. Loffeld, C. Mattoon, M.
McFadden, S. McKinley, M. Meraz-Rodriguez, D. Miller, P. Minner, R.
Nimmakayala, C. Noble, M. O'Brien, M. Osawe, M. Patel, M. Pozulp, B. Pudliner, V.
Rana, R. Rieben, P. Robinson, A. Skinner, D. Slone, B. Stephens, P. Sterne, D.
Stevens, T. Stitt, A. Vargas, B. Wayne, K. Weiss, C. White, R. Whitesides, M. Yang,
B. Yee

June 22, 2021

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Enhancements supporting IC usage of

PEM libraries on next-gen platforms

Edited by
David F. Richards and Brian S. Ryujin

Contributing Authors
Nathan Barton, Sorin Bastea, Brock Beauchamp, Bret Beck, David Beckingsale,
Robert Blake, Patrick Brantley, Peter Brown, Jason Burmark, Robert Carson,

Evelyn Chen, Mike Collette, Shawn Dawson, Larry Fried, Godfree Gert, John Grondalski,
John Gyllenhaal, Burl Hall, Riyaz Haque, Ben Isaac, Max Katz, Adam Kunen,

I-F. Will Kuo, Hai Le, John Loffeld, Caleb Mattoon, Marty McFadden, Scott McKinley,
Manny Meraz-Rodriguez, Doug Miller, Paul Minner, Rao Nimmakayala, Chad Noble,

Matt O’Brien, Maxwell Osawe, Mehul Patel, Mike Pozulp, Brian Pudliner, Verinder Rana,
Rob Rieben, Peter Robinson, Aaron Skinner, Dale Slone, Branson Stephens, Philip Sterne,

David Stevens, Tom Stitt, Arturo Vargas, Brett Wayne, Kenneth Weiss, Chris White,
Russell Whitesides, Max Yang, Ben Yee

June 23, 2021

LLNL-TR-823775

1

Contents

Introduction and Executive Summary 4

1 PEM Efforts to Support the LLNL ASC Mission 6
1.1 LEOS Project . 7
1.2 MSLib . 7
1.3 TDF Project . 9
1.4 Opacity Server . 10
1.5 GIDIplus Project . 11
1.6 Cheetah . 13
1.7 Ares . 14
1.8 ALE3D . 14
1.9 MARBL . 15
1.10 Ardra . 16
1.11 Mercury . 16
1.12 Summary . 16

2 Progress and Challenges Porting PEM Software 18
2.1 LEOS Project . 18
2.2 MSLib . 20
2.3 TDF Project . 21
2.4 Opacity Server . 23
2.5 GIDIplus Project . 24
2.6 Cheetah . 25
2.7 Summary . 27

3 Test Problems 29
3.1 Hotspot Problem . 31
3.2 Hotspot Results . 32
3.3 Shaped Charge Problem . 36
3.4 Shaped Charge Results . 37
3.5 Jetting Defect Problem . 42
3.6 Jetting Defect Results . 43
3.7 Nonlocal Problem . 45
3.8 Nonlocal Results . 46
3.9 Godiva Problem . 48
3.10 Godiva Results . 49
3.11 NIF Chamber Problem . 56
3.12 NIF Chamber Results . 57
3.13 Barrier Problem . 62
3.14 Barrier results . 64

4 PEM Software Porting Highlights and Gaps 68
4.1 LEOS Project . 68
4.2 MSLib . 68
4.3 TDF Project . 69
4.4 Opacity Server . 69

2

4.5 GIDIplus Project . 69
4.6 Cheetah . 71
4.7 Summary . 73

5 Conclusions and Recommendations 74

Acknowledgments 76

References 77

A Program Counter Sampling 79
A.1 Google Performance Tools PC Sampling . 79
A.2 Nvidia Nsight Compute PC Sampling . 79
A.3 Alternatives to PC Sampling . 81

3

Introduction and Executive Summary

Integrated multiphysics codes play an important role in the stockpile stewardship mission at LLNL.
Preparing these codes for next-generation computing platforms such as Sierra and El Capitan is
one of the key responsibilities of the Integrated Codes (IC) and Physics and Engineering Models
(PEM) subprograms of the ASC program. This report describes work performed in support of FY21
Milestone #7847: “Enhancements supporting IC usage of PEM libraries on next-gen platforms.” It
also contains information to satisfy all of the completion criteria. The description and completion
criteria of the milestone are:

Description: This milestone reports on the culmination of several years of effort by
multiple PEM support software development teams to provide capabilities for use in
LLNL-developed integrated codes on next-gen ASC platforms, including GPU support.
We will provide a survey of relevant Application Program Interfaces (API) that are
required to support LLNL IC code capability on relevant architectures, with a focus on
Sierra and El Capitan. We will identify and summarize all dependencies between PEM
supported libraries and IC supported physics codes. We will provide an assessment
of algorithmic improvements that have been deployed, as well as future developments
that are required to complete the GPU porting efforts. This assessment will include
a description of programming models adopted by each of the PEM projects, distinct
algorithmic challenges for each of the capabilities, and information about sharing GPU
memory between the APIs and host codes. We will develop targeted test problems to
assess computational performance. Finally, this milestone will result in identification of
gaps in our effort to assist the LLNL ASC program in prioritization of effort for porting
software to El Capitan.

Completion Criteria:

1. Develop a summary of PEM efforts required to support the LLNL ASC mission on
Sierra and El Capitan. This summary will include information about how PEM
software is utilized within IC codes.

2. Discuss the progress and challenges of porting PEM software integrated into IC
software to GPU architectures, including information about programming models
employed, GPU memory sharing between PEM libraries and host codes, and a
summary of algorithmic challenges.

3. Define targeted test problems for assessing computational performance that exer-
cise the PEM capabilities studied in this milestone.

4. Highlight porting efforts of PEM software integrated into IC software on Sierra.

5. Identify gaps in current effort to enable future prioritization for LLNL PEM-IC
integrated development for Sierra and El Capitan.

The scope of this milestone includes 5 IC codes (ALE3D, Ares, MARBL, Mercury, and Ardra)
and 6 PEM library collections (LEOS, MSLib, TDF, the Opacity Server, GIDIplus, and Cheetah).
The dependencies between codes and libraries is shown in Table 1 on page 6. The outline of this
report closely follows the completion criteria.

Section 1 provides a summary of the capabilities of the PEM libraries and their efforts to support
the ASC mission and also brief descriptions of the IC codes. The PEM libraries have developed
APIs that are designed to meet the needs of IC codes for both CPU and GPU platforms. PEM

4

library APIs typically contain a variety of functions related to setup or initialization and a set of
lookup functions that provide data or model evaluations as a function of problem state. Only the
lookup functions need to support GPU execution. Calling context determines whether the library
needs to provide scalar or vector (i.e., array) interfaces to the lookup functions. Some PEM libraries
such as LEOS and Cheetah that are called in multiple contexts provide both.

Section 2 describes the porting status of the PEM libraries. With the exception of the Opacity
Server, all have functional GPU ports that provide at least some of the library’s capabilities. Of
these, LEOS and TDF are the most mature and are in routine production use. Looking toward
El Capitan, few problems are expected. Moving to a new GPU architecture is expected to require
much less effort that the initial conversion from CPU to GPU. RAJA and HIP will provide the
necessary portability to target AMD GPUs.

Section 3 defines the test problems for this milestone and provides performance results on
CPU and GPU platforms. LEOS and TDF both show excellent node-to-node speedups and typ-
ically require less than 1% of total problem runtime on both GPU and CPU platforms. MSLib
demonstrated speedups of 8.6× and 26× for two different models and Cheetah delivered up to 16×
speedup at typical GPU problem sizes. These results demonstrate that high-fidelity physics models
can obtain speedups similar to pure hydro, making them practical for use on GPU architectures.
Measured GIDI load times are short compared to large 3D simulations, but can be a bottleneck
for quick 1D simulations. The GPU port of MCGIDI appears to perform adequately compared to
other parts of the Monte Carlo algorithm, but this evaluation is very uncertain due to difficulties
obtaining fine-grained performance measurements on the GPU. Finally, the desirability of a GPU
port for the Opacity Client library is demonstrated.

Section 4 collects the highlights and gaps observed while running the test problems. With the
exception of the Opacity Server, all of the PEM libraries have demonstrated GPU capabilities with
encouraging speedups. The fraction of runtime used by the PEM libraries on GPUs is as good as on
CPUs, indicating that the libraries will not be a performance bottleneck. Still, there is considerable
work to be done to increase the range of features that are ported and optimized for GPUs, as well
as testing and hardening code for production.

Finally, Section 5 considers the milestone effort as a whole to provide overall conclusions and
recommendations.

5

1 PEM Efforts to Support the LLNL ASC Mission

Completion criteria #1 of the milestone is:

1. Develop a summary of PEM efforts required to support the LLNL ASC mission on
Sierra and El Capitan. This summary will include information about how PEM
software is utilized within IC codes.

This section satisfies the criteria by providing a description of each of the PEM libraries and IC
codes that are covered by the milestone. Table 1 shows the dependencies between the 6 PEM
libraries and 5 IC codes that define the scope of the milestone. The library summaries include:

• A description of the modeling capabilities provided

• Which IC codes are supported

• Programming language(s) used in the library

• Approximate size of the library

• Level of developer effort

• A high-level description of the library API, with attention given to which functions must
support the GPU.

• Any unique features or capabilities of the library

The section also includes brief descriptions of each of the IC codes.

ALE3D Ares MARBL Mercury Ardra

LEOS X X X

MSLib X X X

TDF X X

Opacity
Server

X X

GIDIplus X X

Cheetah X X

Table 1: Dependencies between PEM Libraries and IC codes.

6

1.1 LEOS Project

The LEOS project provides a set of data access and interpolation routines to facilitate the accurate
and efficient use of equation of state (EOS) data by application programs, including all major
LLNL ASC multi-physics design codes as well as many support codes. EOS data is an essential
component in hydrodynamic and radiation-hydrodynamic simulations, providing energy, pressure,
sound speeds and related data that are needed for the solution of conservation equations, such as
the Navier Stokes equations. Hence, LEOS is on the critical path for hydrocodes to run on GPUs.
Functionality is broken into two libraries, libleos commonly referred to as LEOS, and liblip (the
Livermore Interpolation Package) or LIP. Host codes call the LEOS library which, in turn, calls
LIP to perform interpolations. LEOS and LIP are written in C++ and contain approximately 150k
lines of code. Total developer effort is about 1.5–2.0 FTE/yr.

The LEOS API includes functions for problem setup (file reading, calculation of coefficients,
memory placement, etc.) and EOS lookup. The lookup interface supports scalars (one density-
temperature point), arrays (multiple density-temperature points using C style pointers), or C++
std::vectors as arguments. Most hydrocodes will use either the array or std::vector interface, but
LEOS is also used in some applications and libraries which use the scalar interface. For example,
MSLib makes calls into LEOS using the the scalar interface. While the LEOS library is written in
C++, it also provides optional interfaces for use by C, Fortran, and Python programs.

Codes call LEOS to perform an initial setup by reading the data from a file and determining
the coefficients for efficient interpolation. Setup is performed once per EOS and is done on the
CPU to facilitate file access. LEOS includes capabilities to allow host codes to modify EOS data
during setup. Filters modify the EOS data that is read in from disk as part of setup, creating a
new or modified EOS. After setup, the interpolation coefficient data is unchanged for the duration
of the run. Setup tasks are typically not performance critical and there is no need to port them to
the GPU.

In contrast, EOS lookup functions must run on the GPU and must be very fast since they
occur in 3–4 loops per time step and account for most of the time spent in LEOS. Lookups can
specify hooks that allow modification of the input density-temperature values before and after
interpolation, as well as the resulting interpolation value. Since hooks are part of the lookup itself,
they can execute on the GPU, in conjunction with the LIP interpolation step. Efficient forward
lookups using (density, temperature) points are required. As some codes use density and energy
as their independent variables, an efficient lookup of temperature is provided via a precomputed
(from the energy table) “tcalc” table. The temperature from tcalc is then used with the density in
forward lookups on other tables.

Data management is a key consideration when dealing with EOS data. Some memory reduction
mechanisms are available, in the form of partial interpolation setup and lossy data compression,
allowing trade-off between memory requirements and computational speed should the host code
require.

LEOS uses several additional libraries for datafile access (e.g., HDF5) and other operations,
many of which run only on the CPU. Some packages, like the zfp compression package, run on both
CPU and GPU. LEOS also can use the Umpire and ASCMemory libraries for memory management,
helping facilitate memory usage and data transfer between CPUs and GPUs.

1.2 MSLib

MSLib is a library of constitutive modeling capabilities based on continuum mechanics concepts
and specialized for utilization in a hydrocode setting. The constitutive model has two related

7

jobs: it provides the stress tensor that goes into the balance of momentum, and it updates the
evolving state of the material. This state can be tracked by variables for the stress itself, measures
of accumulated deformation such as the equivalent plastic strain, number densities of atomic-scale
defects, orientations of sub-scale physical features such as crystal lattices, and so forth. MSLib is
invoked at all of the host code integration points every time step as part of the solution of the
balance of momentum. Excluding comments, the main part of MSLib has roughly 110k lines of
code (mostly C with some C++) and there are another 40k lines in the evpc Fortran module for
crystal-mechanics-based models. The evpc module is no longer actively developed. There are other
models in MSLib that were added for assessment or research purposes and that are neither actively
developed nor commonly used in production simulations. Development effort has been less than 0.5
FTE/yr in most recent years, with an increase to roughly 1 FTE/yr during the effort to complete
the initial (fat-kernel) GPU port.

In some use cases, MSLib in turn calls either LEOS or Cheetah to obtain EOS information as
part of the overall constitutive response. These EOS calls may be made inside of an iteration loop.
In more elaborate models, such as those for certain mixtures, the MSLib model may perform LEOS
calls for more than one component material at a given host code location. For use with quasi-static
formulations, the constitutive models also provide a stiffness matrix.

In some cases, the constitutive model sub-problem can be phrased as a system of non-linear
ODEs. In practice, the ODEs are stiff enough that an implicit or semi-implicit time stepping
algorithm is used. Thus the problem becomes the solution of a non-linear system of equations.
Many constitutive models are simplified to the point where a single non-linear equation is solved
iteratively (the rate-dependent radial return algorithm).

While MSLib includes implementations of some of the simplest constitutive model types, it
is often used for more elaborate model types, such as those involving porosity evolution or for
materials that undergo phase transformations.

Many different sub-model combinations are possible in MSLib, and the particular combination to
be used for a given material is established during model initialization. After model initialization, the
model data are constant and the API calls for which computational performance is a concern are of
the getResponse and map families of functions, with the less compute-intensive map type functions
being used for fixed-state evaluation and post-advection “fixup.” It is only these getResponse

and map type functions that have been ported for use on GPUs. The rest of the MSLib API
is implemented only on the CPU. The preferred input parsing pathway for the C++ interface
to MSLib uses MatProp. The initialization phase also includes calls by which the host code is
provided information about history variable requirements. The host code is then responsible for
the initialization and storage of history variables as fields over the appropriate subset of the mesh.
A typical model may have roughly 10 history variables, but the number can vary significantly
depending on the details. Some history variables are for output only and are not needed to track
the material state—so that it is possible for the host code to reduce persistent memory requirements
by choosing not to store these outputs.

The data associated with a given MSLib model itself is typically less than 400 numbers, not
including any associated data requirements for LEOS or Cheetah. Even when the C++ interface
is being used, most of the data for the model are kept in a C struct, and those data are constant
after initialization.

To various degrees, MSLib has interfaces for C++, C, Python, and Fortran.1 MSLib was
originally developed as part of ALE3D and, due to an incomplete transition of some of the input

1The C++ interface used by MSLib can also be used by other constitutive modeling libraries, such as the GeoDyn
material library.

8

parsing, some models remain usable only through the C interface in ALE3D. Over time, more
capabilities have migrated to being available through the C++ interface. A vectorized2 API for the
material evaluation calls and some of the newer models is available only through the C++ interface.
Like ALE3D, Ares uses a combination of the C and C++ interfaces. The Fortran interface is used
by Diablo. The C++ interface is currently being added to MARBL. And the Python interface is
used by MIDAS and for testing and development purposes.

For the vectorized API available through the C++ interface, most arrays are currently required
to be unit-stride. There is an index array for history variables, given that history variables may be
stored on only a relevant subset of the locations on the mesh.

In addition to the above-mentioned direct dependencies, MSLib makes use of SNLS for some
of its non-linear system solves. The SNLS library is LLNL-developed and open-source [19]. The
acronym SNLS stands for Small Non-Linear Solver, with “small” referring to size of the systems
being solved locally to each host code integration point.

1.3 TDF Project

The Thermonuclear Data File (TDF) system generates the data related to the Maxwellian-averaged
thermonuclear reaction rates of various light nuclear reactions and makes it available to the down-
stream applications codes Ares, Kull, and Marbl. This is achieved with the two independent
modules that are called TDFgen and TDFlib. Both TDFgen and TDFlib are written in C and
contain about 2,300 and 7,200 lines of code (respectively). Work on these libraries is performed
only as needed and total developer effort is minimal. Total developer effort has been about one
month/year over the last five years and was exclusively focused on the GPU porting effort. Porting
work for Sierra required less than 0.5 FTE of effort. Prior to Sierra porting work, the libraries have
been mostly untouched since 2008.

TDFgen calculates plasma reactivities, mean kinetic energies, and the final state distributions
at a discrete set of energies. This information is combined with the necessary interpolation data
and stored in ASCII files for use in downstream applications. These downstream applications use
TDFlib as the interface with the TDFgen output ASCII files. TDFgen is not called directly by
application codes. Hence, only TDFlib needs to run on GPUs to support the LLNL ASC mission
on Sierra and El Capitan.

TDFlib divides its API info five categories:

Version Routines (1 function) Returns the version number of the library.

Database Routines (5 functions) Open .tdf file databases and answer simple queries about the
data they contain.

Reaction Info Routines (9 functions) Answer queries about individual reactions, such as the
number of reactants and products.

Look-up Routines (10 functions) Return reactivity and energy information by interpolating from
stored data values. These are the main functions that will be GPU-callable.

On-the-fly Routines (6 functions) Return similar information as look-up routines, but for non-
thermal distributions, where the distributions are inputs. The calculations involve quadra-
tures.

To support calling of query operations within client GPU kernels TDFlib API routines which
may be invoked from either the CPU or the GPU are marked as host device functions. These

2While the interface to MSLib has been vectorized, as described in Section 2.2, in the current fat-kernel GPU port
vectorization is not yet pushed down the call stack.

9

device-callable functions accept scalar arguments. Applications have not expressed any need for an
array-based API. The necessary data structures are made available on the GPU through the use of
unified memory (e.g., cudaMallocManaged). Because the look-up routines have little mathematical
intensity, and because TDF data is typically migrated to the GPU only once per application run,
there is very little cost in terms of flops or data movement from TDFlib itself.

A typical application code will first open a TDF database (database routine), getting back a
C-struct handle to a database struct. It will then ask for the individual reactions it is interested in
(database routines) to get back each reaction as a handle to a reaction C struct. It will then set
itself up to use the reactions by asking each reaction for the numbers of reactions and products and
their clyde numbers (reaction info routines). Finally, in the main loop of its code, it will ask for
reactivities and energies at particular temperatures (look-up routines). Alternatively, it will call
the on-the-fly variants of those routines instead.

During file reading, all data is read on MPI rank 0, and the internal reaction data structures
(C structs) are built and filled. To populate other ranks, the data is serialized, broadcast to all
other processors over MPI, and deserialized. This initial setup runs entirely on the CPU. Once
it is complete, client codes call TDF strictly locally and no further interprocess communication is
needed. In typical production runs the total size of TDF related data structures is approximately
11 MB per MPI rank.

The underlying data for the reactions is mostly in the form of probability distribution functions.
The functions are represented as tables of values at discrete points. Almost all queries, such as
obtaining thermal reactivity at some temperature, require interpolation on the tabular data to find
values intermediate to the stored points. TDFlib also provides accumulations or quadratures on
data, such as when computing cumulative distribution functions. The remaining operations are
bookkeeping lookups of basic data, such as how many products are in a reaction. In summary,
most of the computational routines are linear combinations (weighted sums) over data points held
in tables. The operations are therefore very low cost.

At present, TDFlib depends only on standard system libraries and it uses CMake and BLT to
configure and build. It has no runtime dependence on the nuclear data libraries but it has to be
compiled against a legacy utility library that provides access to an error handling method.

1.4 Opacity Server

The Opacity Server processes raw opacity data of individual chemical elements into average opacity
tables for arbitrary user-specified mixtures. The server is an Apache-based web server maintained
and operated by WCI IT. The supporting client library is used by virtually all WCI radiation
hydrodynamics codes to submit requests to the server, read server generated data tables, and look
up opacity data. Only the client library is linked into host codes. The server contains approximately
35k lines of source code in Python and Yorick. The client library is also about 35k lines of code
and is written in C++ using an object-oriented framework for flexibility. In addition to the C++
interface, it also includes C and Python interfaces. The developer effort for this project is about
1.0 FTE.

The client API provides functions in three categories: submitting requests to the Opacity Server
for a specific mixture, reading server-generated opacity tables from disk, and performing lookups
at arbitrary density and temperature. Historically, host codes used the client only to submit
requests to the server. Each host code maintained its own “native” capability to read opacity files,
store opacity data, and perform lookups. However, usage of the full range of client capabilities,
including the lookup features of the client API is growing steadily. At present the client has no GPU
capabilities. The functions to make server requests and read files are used only during problem set

10

up and are expected to run on the CPU. Hence, only the lookup functions need to be ported to
the GPU.

Lookup functions allow users to specify either an individual density and temperature point
(scalar interface) or group of points (array interface), as well as whether the point(s) are logarithmic
or linear. The initial GPU port will support only the array interface. Users can also specify
different off-table behavior (OTB) for each direction. Different choices of OTB are required due
to the complex dependencies of opacities with respect to density, temperature, and energy groups.
A lookup works by calculating the bounding box of each point passed to the lookup function and
interpolating between the values. If a point is off-table in any direction, the specified OTB for that
direction is used instead.

A server generated file can be read and processed by the client library. By default, each server
generated file contains a metadata string, which instructs the client library how to properly read the
data. The client library only loads and processes the data specified in the metadata string; these
data are stored in a general OPAC::Opacity Data object. The OPAC::Opacity Data object supports
several fundamental types of data; data of the same type are stored and can be retrieved from a C++
std::map. In general, each set of tabulated data is stored in an OPAC::Table Data object, which can
hold an arbitrary number of axes. Each of the axes is represented by an OPAC::Axis Data Abstract
object, and these objects can be retrieved directly from the OPAC::Table Data object. The
OPAC::Table Data interface allows users to read their data as logarithmic or linear, change the
axis ordering of the table, and specify which axes belong in the dependent or independent space.
The independent space determines which axes are used for the interpolation, and the dependent
space are the values at each point being interpolated. Interpolation of data is provided via the
OPAC::Lookup Table object, which contains a reference to a OPAC::Table Data object. OTBs are
specified independently for each axis and is represented by derivations of the OPAC::OTB object.
OPAC::Lookup Table contains all the logic for finding the bounding box of the points passed to
the lookup function to perform interpolation.

The client library relies on a number of third party libraries including Pact, PDBLite/Silo,
HDF5, zlib, and ASCMemory. Most of these are needed on the CPU only. Umpire and RAJA
dependencies will be added when GPU lookups are implemented.

1.5 GIDIplus Project

GIDIplus is a collection of C and C++ APIs that support loading and sampling libraries of evaluated
and processed nuclear physics data, including nuclear reaction cross sections, energy and angle
distributions for outgoing reaction products, transfer matrices (for use in deterministic transport),
particle masses and nuclear decay properties. These data are necessary for solving the Boltzmann
transport equation to determine the flux of neutrons, photons and charged particles in transport
applications. The main users of GIDIplus at LLNL are the deterministic radiation transport code
Ardra and the Monte Carlo radiation transport code Mercury. Data are stored in the Generalized
Nuclear Database Structure (GNDS) format, which has been developed over the past decade by
an international collaboration led by LLNL. GIDIplus contains approximately 30k lines of code
divided across several related libraries as described below. Developer effort is about 0.3 FTE.

GIDIplus currently coexists with an older set of nuclear data libraries including libNDF, libM-
CAPM and libNuclear. These libraries are part of an aging infrastructure that was built around the
Evaluated Nuclear Data Library (ENDL) format, which has been used at LLNL for over 50 years.
These libraries are still commonly used for multiple applications at LLNL, but they are no longer
being actively maintained. The older libraries are being replaced by GIDIplus and GNDS, and
development work is focused on these new products.

11

GIDIplus is designed to be ‘particle agnostic’: it handles nuclear reactions for any combination
of projectile and target, as well as some reactions with atoms and molecules (e.g. photon scat-
tering off of atomic electrons). However, the code can only provide whatever data is present in
GNDS libraries. Currently those libraries include nuclear reaction information for incident neu-
trons, photons and light charged particles (up to alpha particles), atomic interactions for incident
photons and electrons and in some special cases interactions between low-energy incident neutrons
and molecular targets.

One of the main challenges to the design of GIDIplus is the large volume of nuclear data needed
by transport applications. For example, the LLNL ENDL2009.4 nuclear reaction data library
includes information about over 3600 different combinations of projectile and target, including
585 evaluations for incident neutrons. Each evaluation may store multiple reactions (typically 30–50
for incident neutrons) and lists cross sections and outgoing product distributions for each reaction.
These libraries are organized through the use of ‘map’ files which list all available evaluations for
each projectile and target.

Nuclear data libraries for incident neutrons are typically Doppler broadened to multiple temper-
atures to account for changes in the cross section (and to some degree the outgoing distributions)
due to thermal motion in the target. Doppler broadening is computationally expensive, so it is done
as part of generating the processed library. Processing also requires generating transfer matrices for
each reaction, temperature and outgoing product. The transfer matrices are used to transform an
incident particle flux into an outgoing flux as a function of energy and angle. Processed GNDS files
list cross sections and transfer matrices at 23 different target temperatures ranging from room tem-
perature up to 100 keV/kB (approximately 1.2 GK). These files store both ‘continuous energy’ and
‘multigroup’ versions of cross sections and distributions, with the continuous energy data typically
being used for Monte Carlo transport and the grouped data being used for deterministic transport.
Altogether the processed ENDL2009.4 library (in GNDS format) takes up approximately 99 GB
on disk, the bulk of which (96 GB) is consumed by data for neutron-induced reactions.

GIDIplus consists of several related libraries:

• GIDI, the General Interaction Data Interface. GIDI is primarily responsible for loading
nuclear data from GNDS data files into an internal class hierarchy and for performing some
basic operations such as collapsing multi-group data down to coarser group structures while
applying flux-weighting spectra. GIDI consists of approximately 10,000 lines of code, with an
additional 3200 lines of test code.

• PoPI, Properties of Particles Interface. PoPI is responsible for loading information about
particles such as nuclei, excited nuclear states, baryons, leptons and photons. These data
are stored in ‘PoPs’ files, which are also defined as part of the GNDS standard. When GIDI
encounters particle information while parsing nuclear reaction data, it delegates responsibility
to PoPI for reading that particle data. PoPI consists of approximately 1500 lines of code with
an additional 300 lines of test code.

• MCGIDI, Monte-Carlo GIDI. MCGIDI is designed to be integrated into a Monte Carlo trans-
port code such as Mercury, and provides stochastic sampling of nuclear reaction and decay
data. MCGIDI does not include any direct file I/O capability. Instead it relies on GIDI
to load in data, then performs some simple transformations to optimize performance while
sampling the data. MCGIDI consists of approximately 9500 lines of code, with an additional
3000 lines of test code.

• HAPI, the Hierarchical data API. HAPI is a recently developed compatibility layer designed
to help speed up GIDI file load times, and will be discussed further in section 4.5.

12

The test problems in this milestone focus on the GIDI and MCGIDI components of GIDIplus.
Two of the most important components of the GIDI API are the GIDI::Map::Map and the

GIDI::Protare classes. The Map class typically serve as the main point of entry for application
codes using GIDI. The Map reads in a map file, which stores information about all available
projectile / target / evaluation combinations in a library. These combinations are also called
Protares (PROjectile + TARget + Evaluation). The Map class provides a method for reading in
specific files to generate GIDI::Protare instances. The GIDI::Protare (and its subclasses) contain
methods for extracting all of the nuclear data terms required by deterministic transport codes.

Monte Carlo codes also use the Map and GIDI::Protare classes to read in data, and then
use the GIDI::Protare to construct an MCGIDI::Protare. The MCGIDI::Protare class contains
a smaller subset of the nuclear data, and is enhanced with sampling capabilities. For example,
MCGIDI provides the total reaction cross section for each material in a transport problem. Once
the transport code determines (using the total cross section) that a reaction has occurred on one of
the materials in the problem, the MCGIDI::Protare corresponding to that material is responsible
for sampling 1) which reaction occurred, 2) what reaction products are emitted and 3) the outgoing
energy and angle of each reaction product.

GIDI depends on only a few third party libraries including Umpire, HDF5, and pugixml. Of
these only Umpire has any relevance to GPU performance.

1.6 Cheetah

The Cheetah high explosive code provides advanced high explosive equation of state and burn ki-
netic models for the Ares and ALE3D multiphysics codes. Cheetah calculates chemical equilibrium
between reacting chemical species by solving stiff nonlinear equations using backtracking Newton
solvers. Chemical kinetics is solved by solving ordinary differential equations with partial chemical
equilibrium, which requires nonlinear equation solving at every step of the differential equation
integrator.

Cheetah is written in C and C++, and contains about 360,000 lines of code. The code func-
tions as both a material library for multiphysics code, and as a stand-alone application used to
model energetic material energy delivery. The Cheetah stand-alone application is supported by the
Department of Defense through the DoD/DOE Joint Munitions Program, and is released to over
500 users. The stand-alone application can be used with a traditional command line interface, or
with a Java graphical interface implemented in roughly 50k lines of Java code through a Java/C
native interface. Total code developer (as opposed to model development and calibration) effort
has historically been about 1.0 FTE/yr. However, that effort is currently elevated to about 3.0
FTEs to provide the extra resources needed for GPU porting.

Cheetah provides a C API consisting of functions providing per-problem initialization, per-
material initialization, equation of state evaluation, chemical kinetic evaluation, and parallel com-
munication between MPI tasks. Cheetah provides to the multiphysics code an evaluation of equation
of state parameters such as temperature and pressure, transport parameters such as viscosity, and
solves chemical kinetic equations associated with high explosive burn. The parameters returned by
Cheetah can be specified by the calling code, which allows for efficient adaptation to an array of
possible host code environments.

The original API, designed for CPUs, relied on a single function call per hydrodynamic finite
element (typically called a zone). This scalar interface is not well suited for advanced GPU archi-
tectures that efficiently process long vectors of operations. To improve Cheetah’s performance on
GPU architectures, the Cheetah team developed a vector interface, which allows millions of zones
to be processed together. The vector interface is invoked from the CPU, but calls device kernels to

13

process long arrays of zones.
A central issue in Cheetah is the use of partial chemical equilibrium. Partial chemical equilib-

rium allows Cheetah to track many more chemical species than are exposed to the hydrodynamic
code, which greatly improves efficiency and reduces memory usage. Partial chemical equilibrium,
however, requires stiff nonlinear equations to be solved for every evaluation of the chemical reaction
rate. In addition, the nonlinear chemical equilibrium equations are based on sophisticated statisti-
cal mechanical theories of dense fluids. The statistical mechanical equations are highly complicated
in form, making the solution of the nonlinear chemical equilibrium equations numerically intensive
from the viewpoint of a multiphysics code. It is common for the stand-alone application to take
0.01–1 second to solve the equations, which is up to 6 orders of magnitude slower than requirements
for a successful hydrodynamic simulation at a typical application scale.

A unique feature of Cheetah is its ability to greatly improve performance using a database or
cache of solutions that is constructed on-the-fly. As chemical equilibrium calculations are completed,
they are stored in a sparse equation-of-state database that is used to answer future queries and
reduce the number of chemical equilibrium solutions that need to be executed. Therefore Cheetah
functions as an on-demand physics code, where numerically expensive physics equations are solved
adaptively as the multiphysics simulation explores new phase space. Use of the cache database
increases the speed of the HE detonation response function evaluations 10,000 times over direct
numerical solution of the physics equations, making a highly sophisticated model computationally
affordable.

Cheetah relies on a number of third-party libraries when linked to a multiphysics code. These
include RAJA, Umpire, HDF5, zlib, and dmalloc or tcmalloc. Cheetah also uses a customized
version of the LLNL CVODE solver, which is part of the Sundials package and a customized
version of the donlp2 nonlinear programming library (www.netlib.org) translated into C and used
for quadratic and general nonlinear constrained optimization. Additional dependencies arise for
the graphical interface of the stand-alone code, which will not be discussed here.

1.7 Ares

Ares is a multi-dimensional, massively parallel, multi-physics code developed to support the stock-
pile stewardship mission. Its primary use is to support the design and analysis of programmatic
experiments supporting that mission. This includes experiments to better understand basic ma-
terial properties important to DOE and DoD national security missions, such as the behavior of
high explosives (HE) under a range of conditions as well as strength, melt and vaporization prop-
erties of inert materials. The variety of experimental platforms that must be modeled includes the
Z-machine at SNL, which necessitates the need for magnetohydrodynamic (MHD) capabilities, the
Omega (LLE) and NIF (LLNL) platforms, which require laser modeling capability and high en-
ergy density physics (HEPD) capabilities including local and non-local thermodynamic equilibrium
(NLTE) models, separate electron, ion and radiation temperatures, and radiation diffusion and
transport. In order to support the design and analysis of experiments aimed at understanding tur-
bulent mix, Ares has a wide collection of mix models for micro-jetting at surfaces, hydrodynamic,
and plasma-phase mixing.

1.8 ALE3D

ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian-Eulerian
(ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmet-
ric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and

14

finite volume formulation to model fluid and elastic-plastic response of materials on an unstruc-
tured grid. ALE3D is a single code that integrates many physical phenomena through an operator
splitting approach. Additional ALE3D features include heat conduction, chemical kinetics, species
diffusion, incompressible flow, a wide range of material models, chemistry models, multi-phase
flow, and magnetohydrodynamics, which can be used in numerous combinations for long (implicit)
to short (explicit) time-scale applications. ALE3D also makes heavy use of Smoothed Particle
Hydrodynamics (SPH) via Spheral and embedded grids.

ALE3D operates on a wide variety of platforms, ranging from laptops to the world’s largest su-
percomputers. ALE3D has native implementations for Windows and Mac workstations for smaller
scale problem sets, and it is portable to virtually any Unix-based machine with C++/C and For-
tran compilers available. The code will also run in parallel on multi-processor Windows and Mac
machines. While most users will be interested in Linux-based versions of the code, it has also been
ported to several other lightweight kernel operating systems.

1.9 MARBL

MARBL is a next-generation multiphysics code that addresses the modeling needs of the high energy
density physics community for simulating high-explosive, magnetic or laser driven experiments such
as inertial confinement fusion (ICF), pulsed-power magnetohydrodynamics, equation of state and
material strength studies as part of the NNSA’s stockpile stewardship program .

MARBL ’s design centers around its modular computer science, physics, and math infrastruc-
ture. A foundational component of MARBL is the Axom computer science (CS) toolkit which
provides infrastructure for the development of modular, performance portable, multi-physics ap-
plication codes [15]. Axom’s Sidre (Simulation data repository) component provides capabilities
to centralize data management in high-performance computing (HPC) applications for efficient
coordination and sharing of data across physics packages and other libraries in integrated applica-
tions, and between applications and tools that support file I/O, in situ visualization and analysis.
Sidre leverages Conduit’s Mesh Blueprint conventions to share mesh-based simulation data between
physics packages.

In addition, MARBL’s performance portability abstractions enable performance portability and
heterogeneous memory management. RAJA is an open source set of C++ abstractions for writing
single-source, portable loop kernels which supports multiple back-ends including sequential, SIMD,
OpenMP (CPU, target), CUDA and AMD HIP. Umpire is an open source API for managing
heterogeneous memory resources including memory operations for integrated applications. MARBL
has integrated these into its usage of finite element classes via MFEM’s built-in Device and Memory
abstractions.

MARBL is designed from inception to support multiple diverse algorithms, including Arbi-
trary Lagrangian-Eulerian (ALE) and direct Eulerian methods for solving the conservation laws
associated with its various physics packages. A distinguishing feature of MARBL is the use of ad-
vanced, high-order numerical discretizations such as high-order finite element ALE and high-order
finite difference Eulerian methods. High-order numerical methods were chosen because they have
higher resolution/accuracy per unknown compared to standard low-order finite volume schemes
and because they have computational characteristics which play to the strengths of current and
emerging HPC architectures. Specifically, they have higher FLOP/byte ratios meaning that more
floating-point operations are performed for each piece of data retrieved from memory. This leads to
improved strong parallel scalability, better throughput on GPU platforms and increased computa-
tional efficiency. To achieve the necessary meshing flexibility, high-order discretization capabilities
and high performance including both on- and off-node parallel scalability, MARBL makes extensive

15

use of the modular, open source finite element library MFEM as well as the scalable linear solvers
library, Hypre.

1.10 Ardra

Ardra is a multi-dimensional, scalable, massively parallel code for performing deterministic, discrete
ordinates (SN) neutron and radiation transport calculations. It supports high resolution in all
aspects of the solution phase space (space, energy, direction), employs a highly efficient, scalable
MG-DSA (MultiGrid-Diffusion Synthetic Acceleration) preconditioned solver, and supports both
CPU and GPU architectures. The modeling of the transport of neutral particles (e.g., neutrons and
photons) is of importance to many scientific and engineering activities, including but not limited
to reactor and shielding design, development of medical radiation treatment, nuclear well logging
applications, and nonproliferation applications. In particular, Ardra is an important tool at LLNL
for neutron criticality, shielding, and dosage calculations in support of DOE and DoD missions.

1.11 Mercury

Mercury is a production Monte Carlo particle transport code under development at LLNL for over
twenty years [9]. Mercury can transport neutrons, photons, and light element (hydrogen and he-
lium) charged particles. Both fixed source and criticality problems are treated. Mercury models
problem geometry using either a constructive solid geometry and/or a mesh representation. Mer-
cury can use either continuous energy cross section data or a hybrid approach in which multigroup
cross sections are sampled from a histogram while the collision kinematics uses continuous energy.
Nuclear/atomic cross section data access and particle collision physics are provided by the legacy
Monte Carlo All Particle Method (MCAPM) library [10] or the modern GIDIplus project [7] con-
taining the GIDI/MCGIDI libraries. Mercury is parallelized via domain decomposition and domain
replication with dynamic load balancing. Mercury uses MPI parallelism across compute nodes and
MPI or OpenMP threading on-node to target CPU cores and CUDA to target GPUs. Mercury
is written in C++ with a Python user interface and runs efficiently on CTS massively parallel
computing platforms. Mercury has been ported to the ATS-2 Sierra GPU architecture; however,
obtaining good GPU performance is a challenging and ongoing research effort.

1.12 Summary

The PEM libraries are actively supporting the execution of IC codes on GPU platforms by providing
APIs and implementations that are suitable for GPU execution. Section 2 contains more specific
information about the GPU ports of each library. Table 2 summarizes the characteristics of the
PEM libraries discussed in this section.

16

Lines of
code

Language
Effort
Level

API Type

LEOS 150,000 C++
1.5–2.0
FTE

Scalar and
Array

MSLib 150,000
C/C++/
Fortran

1 FTE Array

TDF 10,000 C < 0.5 FTE Scalar

Opacity
Server

35,000 C++ 1 FTE Array

GIDIplus 30,000 C/C++ 0.3 FTE Scalar

Cheetah 360,000 C/C++ 1–3 FTE
Scalar and

Array

Table 2: Code characteristics of PEM libraries

17

2 Progress and Challenges Porting PEM Software

Completion criteria #2 of the milestone is:

2. Discuss the progress and challenges of porting PEM software integrated into IC
software to GPU architectures, including information about programming models
employed, GPU memory sharing between PEM libraries and host codes, and a
summary of algorithmic challenges.

This section satisfies the criteria by describing the porting progress and challenges for PEM libraries
in the scope of this milestone. These descriptions include information about state of the GPU port,
the GPU programming and memory model employed, algorithmic challenges and restructuring,
and data size and memory sharing considerations.

2.1 LEOS Project

The GPU ports of LEOS and LIP are now sufficiently complete to allow application codes to run
most problems of interest. Some specialized and rarely-used capabilities (e.g., support for some
multitable features) still need to be completed. The porting proceeded in stages: forward and
inverse array lookups, tcalc using a composite method with two forward array lookups, single-
point lookups for scalar data, a native tcalc method, and finally multitable forward, inverse, and
tcalc lookups. The missing pieces are single point lookups for functions of multitable materials,
some setup methods for interpolants, and using the std::vector interface for lookups. The latter is
constrained by the need to allocate the std::vector’s data in GPU memory. If that is done, possibly
using the CHAI library, then it may be possible to extract the pointers to device memory and use
the array interface for the evaluation.

The LIP library performs the bulk of the computations. At the start of the porting process,
LIP was a C library which had grown organically over the years. As a result, the interface was
inconsistent, and the addition of new interpolation methods resulted in significant code duplication.
The library was therefore not suitable for immediate porting to a GPU-based environment. We
had discussed the need to rewrite LIP in C++, purely based on code maintainability considera-
tions, before the advent of GPU machines; this accelerated the process. We decided to rewrite
in C++ using template-based generic programming so that we could plug in different policies for
interpolation to offer as much flexibility as possible in the model we needed for GPU ports. We
avoided polymorphism and virtual functions because of known challenges with this approach on
GPUs. The use of policy classes for the different interpolation schemes allowed us to concentrate
initially on a few most commonly used interpolation schemes: bihermite, bimonotonic hermite, and
bilinear. Once the framework was in place to handle these classes, it was straightforward to add
classes for other interpolation schemes, or variants of existing schemes. We also added (lookup)
policy classes to the framework, to control how input values are located in the axes.

As originally coded, a LIP interpolation call had three major loops: 1) compute the indices of
the input density values into the density axis, 2) compute the indices of the input temperature into
the temperature axis, and 3) use the indices in a loop over the input (density, temperature) pairs to
evaluate the output values. We decided to adopt RAJA for alls to replace the for statements, as this
allowed us to make minimal changes to the existing source code. Instead of using raw RAJA coding,
we used a set of wrapper classes on top of RAJA developed for the ASC code Ares which turn
into regular for statements if RAJA is not used to compile the code base. As the porting process
continued and the growing need to support single point lookups on the GPU became evident (e.g.,
when LEOS is called from MSlib), the coding in the policy classes was refactored so that the bodies

18

of the RAJA for alls were turned into device callable functions. These functions are then reused
for single point interpolation.

We made two significant algorithmic changes for GPUs. The first was to add a full binary
search lookup policy for use on the GPUs. This allows the lookups to run independently on each
GPU thread. The old lookup policy was similar, but it contained a legacy serial dependency since
it used the result of the last lookup to seed the search. The second change, which occurred after the
scalar interface was implemented for GPUs, was to remove the temporary arrays created to hold
the indices found by the lookups and to use single point calls of the lookup policies in the for alls
with scalar values for the indices. This did not reduce CPU efficiency since the CPU coding passes
the indices found on the previous iteration into the lookup calls.

Memory management is very important for code stability and efficiency. In the standard use
case of full setup, the interpolation policies precompute interpolation coefficients and store them
for later use. Depending on the problem, this permanent memory can be 400–500 MB in size.
LEOS also uses temporary memory for arrays used in evaluation calls. The amount of temporary
memory needed can be anywhere from zero to 10x the size of the input array. On Sierra this
could be up to 100–200 MB of memory for problems with 1–2 million zones per GPU. For good
performance, both permanent and temporary memory need to be located where the code will be
executed. Additionally, if the host code is using memory pools, LEOS will benefit from them as
well. Thus, the host code needs to control selection of memory locations. The original C LIP coding
has some macros for using CPU shared memory (sharing memory between multiple MPI ranks on
the same node) for the permanent data, but these were insufficient for the needs of the GPU code.

A new LIP::MemoryManager class was added to the C++ version of LIP to handle con-
trolling the location of memory allocations. The initial implementation wrapped malloc/free,
CUDA memory calls, and the CNMEM library. Selection of location was controlled by a new
flag which was passed into LIP via new members in the LIP setup and lookup option objects. An
LEOS::MemoryManager class which simply wraps LIP::MemoryManager calls was added to sup-
port the memory needs of LEOS. The LEOS options objects were also modified to pass in flags
for memory control which are then propagated into LIP. The managers also support CPU shared
memory via the ASCMemory library for permanent memory.

As the Umpire library gained both features and popularity, the memory manager coding was
extended to use Umpire for memory management. The flags for memory control in the option
objects were changed from an enumeration type to ints so that Umpire allocator IDs could be
passed into the MemoryManager classes. Additional data members and functions to get/set the
IDs were added to the MemoryManager classes to control how Umpire is used. Currently, three
modes are supported when Umpire is compiled into the code base: 1) Pass in Umpire IDs and use
them to get Umpire allocators to use, 2) pass in values from the enumerated type and use basic
Umpire allocators (e.g., “HOST”, “DEVICE”, “UM”), and 3) pass in enumeration values and do
not use Umpire. Using case 1 allows LEOS to use Umpire memory pools, if the host has created
them. Case 3 is currently the only way to use CPU shared memory.

A new interpolant class was added to efficiently handle GPU evaluation of phase fractions for
flattened multitable materials. This class, which combines continuous interpolation in 2D space
with a third discrete axis, can also be used in the future to support other data objects with similar
structure, such as multigroup opacity tables.

In LEOS, the changes needed were fairly modest. The for loops in the Prehooks and Posthooks
(42 simple loops) were converted to RAJA for alls. Also, 50 loops were converted for multitable
and tcalc lookups. The new LEOS::MemoryManager class was used to manage memory for the
temporary arrays needed when hooks are used. The option objects were modified to handle the
memory flags, and to pass those flags to LIP.

19

Originally, a compile time choice determined where LEOS and LIP would execute (CPU or
GPU). This has been changed at the request of one of the ASC hydrocodes to allow the choice to
be made at runtime for each individual setup call and each individual lookup call. A new flag was
added to the option classes to specify where the call should execute. The RAJA wrapper classes
were modified to select the correct implementation for the location specified by the new flag.

Initial work for El Capitan has started. So far, only two places have been found where changes
needed to be made. First, the memory managers were modified to support either CUDA memory
calls or the HIP equivalents. Second, the implementation of some functions needed to be moved
into header files to prevent link time errors with hipcc. These straightforward changes have been
merged into the develop branch and will be included in the LEOS 8.4 release. Full support for
El Capitan will require updated versions of RAJA and Umpire that include HIP support, but no
additional LEOS or LIP source code are anticipated.

2.2 MSLib

A fat-kernel port of a subset of MSLib sub-model options has been completed. This work was meant
to get initial GPU capability in place, particularly for more commonly used models, to mitigate
the performance penalty associated with the use of MSLib on next-gen platforms. Details of the
supported sub-models are captured in the “GPU Port” area of the MSLib confluence page, and
the Get GPUSupported function can be called on a MSLib model object to determine whether it
can execute3 getResponse and map type calls4 on the GPU. Notably, MSLib models that make
use of LEOS, Cheetah, or the EOS callback feature do not yet work on GPUs. Capabilities for
GPU utilization of LEOS are in progress, making use of device-callable single-point functions
(Section 2.1). Other than the utilization of LEOS, all of the most commonly used sub-models
within MSLib have been ported in the fat-kernel approach.

In the fat-kernel approach there is a loop high in the call stack, and vectorization over zones is
not propagated down the call stack. Given the depth of the call stack and the lack of clear hot-
kernels on which to focus attention, this fat-kernel approach was an expeditious means of porting
key models with the modest effort available. In some cases, the call stack has a depth of ∼10 below
the loop over zones from the host-code. Functions were reworked to be device-callable, and some
cleanup and restructuring was required.

For many legacy models there are no near-term plans to perform a GPU port. One of the
crystal-mechanics-based models in the Fortran evpc module was rewritten in templated C++ as
part of the ECMech library (which uses the same interface as MSLib and will for purposes of this
discussion be considered as part of MSLib). The initial GPU port into ECMech was supported
by the Exascale Computing Project (17-SC-20-SC) and the incorporation for hydrocode used was
supported by ASC/PEM and the Joint DoD/DOE Munitions Program. Note that while the core
of ECMech is open-source [5] the hydrocode-specific interface is not.

The SNLS solver is templated on the size of the non-linear system, but in one of the porosity-
based sub-models the system size is not known until runtime. For that sub-model, we use a switch
block for the instantiation of the templated solver.

In the initial implementation for stand-alone testing, MSLib managed local host/device memory
operations with memory allocations via cudaMalloc and cudaMemcpy. Subsequently, there were

3To some degree, execution on the CPU or the GPU can be controlled at runtime using setExecutionStrategy;
with this feature facilitating timing comparisons and debugging.

4While the principal path to GPU utilization is through the vectorized C++ calls, there is some exploratory work
in which the MSLib C interface is used to call MS MaterialModels D (instead of MS MaterialModels) inside of a
host-code kernel.

20

improvements to allow device pointers to be passed directly to vectorized API, eliminating most
data motion costs.

For performance improvement, we are exploring pushing vectorization down the call stack as an
alternative to the fat-kernel approach for a subset of the sub-model options. This would be done
using some combination of RAJA, Umpire, and either CHAI or CARE. Exploratory work has been
performed on vectorization of SNLS, with ECMech being used as a testbed. For the full vector-
ization, initial focus would be on capabilities that work with ysmodel 115 (YSMODEL J2 VOID).
This sub-model captures some complexity but is still much simpler than, for example, a porosity-
mechanics-based model. Even with this narrowed focus, vectorization is a significant undertaking
given that most of the call stack is in C and would require migration to new class structures in C++
as part of this effort. This porting effort to C++ will also improve functionality and maintainability
of MSLib. Once the initial port is finished, future sub-models should require less effort to port due
to many of the shared internal models having already been ported.

Finally, error reporting on GPUs remains incomplete. On CPUs, the error reporting had been
based either on exceptions or on MPI Abort. Currently hard errors in MSLib have become soft
errors when running on the GPU (meaning that an error message is printed), with potentially
unexpected results in the execution after the soft error. In the future, we plan to rework the error
checking so that there is an array of status codes. This array would then be checked within MSLib
on the host.

MSLib does not use data tables and the memory needed by MSLib model parameters is typically
only a few kilobytes or less.

Currently, a CUDA call is used for sending the MSLib model data to the device. In the migration
to El Capitan, this will have to be refactored to work with HIP. As part of this rework, we are
looking at replacing these raw CUDA calls with Umpire and RAJA. Umpire will also enable the
use of temporary memory pools already designated by host codes. There are also plans to explore
whether CARE can replace the current MSLib-specific loop abstraction and memory management
constructs with a community-supported solution.

2.3 TDF Project

As explained in Section 1.3, TDF consists of two libraries, TDFgen and TDFlib, but only the
TDFlib library is used by application codes. Aside from CPU-only setup functions, applications
typically call TDFlib functions inside loops (or, on GPUs, inside kernels). Hence the process of
porting TDFlib to GPUs was driven by the need to make reaction-info and look-up functions
device-callable. It was also necessary to place data tables in unified memory to make them GPU
accessible.

A CUDA-based port of TDFlib is sufficiently complete to support all current production use
cases of all supported host codes. Four of the nine reaction info functions and eight of the ten
look-up functions have been made device-callable and all necessary reaction data tables are device-
accessible. Although there may be a need to port additional routines in the future, the current
port has been vetted with current needs of multiple applications.

Most device-called routines in TDFlib are simple interpolation or lookup routines. In most
cases, porting these functions to CUDA required little effort beyond marking them as host

device functions. Function bodies typically remained unchanged.
The main challenge of porting TDFlib to CUDA was moving the hierarchy of C structs rep-

resenting the TDF data to the GPU. Because the reaction data is represented by a hierarchy of
C structs connected by pointers, copying the the reaction data from CPU to GPU at setup time
requires effectively a “deep memory copy” of the reaction data.

21

A GPU accessible version of the reaction data is created using serialize/deserialize routines
separate from those used to broadcast the reaction data over MPI. This process converts the
original CPU data structures with over 100 smaller memory allocations into a single large pool (per
reaction) that is big enough to hold the entire set of TDF data.

After reaction data is read in from disk, if compiling for the GPU, a single allocation per
reaction accessible on both CPU and GPU is created using cudaMallocManaged and data is copied
from the original CPU structures. After the data is copied, the original memory (with the 100+
separate allocations) is entirely freed, and both the host CPU and device GPU access the version
in managed memory.

Currently, the MPI broadcast of the TDF data from MPI process 0 to all other MPI processes
takes place after the above copy. During the broadcast, rank 0 first sends the size needed for the
single allocation the other ranks, which allocate managed memory. The TDF data is then sent and
the data is copied into managed memory as described above. Thus all MPI ranks work with the
same type and layout of managed memory, with the addressses set as offsets which are correct for
their MPI process.

It should be noted that the MPI broadcast currently involves an additional copy. The use of
memory allocated with cudaMallocManaged with MPI communication is not guaranteed to work
correctly unless specific job submission (jsrun or lrun) options are specified by the user. To avoid
this requirement (and difficult to diagnose errors if the user fails to supply the correct flags) the
data is copied into regular host memory for the communication, and freed when done. Since this
extra copy appears only during setup, the cost is acceptable for portability and usability goals.

In 2020, the GPU port was reviewed and updated based on some observations of leaked memory
and segmentation faults under some scenarios. Extensive debug code was added to check that the
memory copies are correct. This included routines to do a detailed comparison of the original
memory to the single pool of managed memory to verify the data matches after the copy. Also in
2020, more routines were made device-callable as a new code required additional TDFib functions
on the GPU. Some of these functions were refactored to avoid the use of certain functions from the
libc c-string family of functions that are not supported on the GPU. The library was refactored to
perform such work on the host only. This work is reflected in the unofficial 2.3.62 version of the
TDF library in the git repository.

The memory footprint of TDF reaction data is very small, only about 11 MB. Because this
footprint is so small there is no need to coordinate memory allocation with host codes or with
other libraries.

The El Capitan port of TDFlib has not progressed past the earliest planning stages. However,
considering the simplicity of the CUDA code in TDFlib and the broad compatibility between the
HIP and CUDA programming models, we anticipate very few issues creating an implementation that
will be portable between Nvidia and AMD hardware. The planned implementation of managed
memory on El Capitan also has all of the features necessary to support the current design of
TDFlib. We also plan to investigate using Umpire pooled allocators to significantly simplify copying
of reaction data into managed memory. It should be possible to avoid the current copy-before-
broadcast approach and only serialize the CPU version of the reaction data structures for MPI
broadcast. The deserialize function can then unpack the data into memory obtained from an
appropriate Umpire allocator. This would completely eliminate the separate copy functions that
are currently used.

22

2.4 Opacity Server

The Opacity Client library currently has no support for GPUs. The conventional wisdom has been
that the time spent in the client library will be negligible compared to the total run time of physics
packages that require opacity data, (e.g., Teton SN transport). Hence, developing the ability to
perform lookups on the GPU has not been a high priority. However, as various physics packages
have started to obtain good speedups on the GPU it has become clear that leaving the lookup code
on the CPU will not meet performance goals. To understand why, consider a physics package that
runs 10x faster on 4 GPUs (1 Sierra node) than on 40 CPUs (also 1 Sierra node). Speeding up the
physics makes the CPU-only lookup code 10x more expensive relative to physics. The problem is
made worse by the fact that host codes running on GPUs typically run only 1 rank per GPU. Hence,
the lookup code (which is not threaded) will be limited to 4 CPUs per node imposing another factor
of 10x slowdown compared to the CPU-only baseline. With the additional cost of moving data from
GPU to CPU, the fraction of time spent in lookups can grow by over 100x and times that were
once negligible can become quite painful. This section highlights the GPU development plan for
the Opacity Client and the key steps in making the library work on the GPUs.

The ability to serialize tables and move data around in memory already exists and is currently
used for sharing tables across MPI processes. This existing code can be refactored to move data
to the GPU. The serialization logic will be modified to use Umpire to allocate memory on the
GPU. An OPAC::Table Data object, which contains the opacity data and axes for a specific table,
will be serialized and copied to GPU. Once the serialized table is copied to the GPU, a simplified
OPAC::Table Data object will be constructed on the GPU with the minimum interface a lookup
needs to access the data in the table. Logic for reading the table from a file and reordering the
axes will remain on the CPU only. The OPAC::Lookup Table object itself will exist on the CPU
containing a pointer to the GPU OPAC::Table Data. The existing lookup logic works by looping
over each point passed to the lookup function. For each point, it finds the bounding box from
the OPAC::Table Data by running up each axis. Next, it passes the bounding box points to the
interpolation function along with any information about inputs or outputs being logarithmic or
linear. Within the interpolation function, the interpolation is done for each group, since tables
returned by the server are often group averaged. The lookup function can be parallelized by point
or by group. It is likely that both options will be implemented to allow the host code to decide
which option works best for them. The OPAC::Lookup Table class will use RAJA to parallelize
the lookup function. Using RAJA to launch kernel functions and Umpire for memory management
has the benefit that all code will be CUDA/HIP agnostic for compatibility with El Capitan.

The Livermore Interpolation Package (LIP) is being considered as an alternative interpolation
library. It has already implemented various interpolation functions on the GPU and it seems feasible
to replace the client interpolation logic with LIP, however, LIP currently lacks several required
features. First, the current table implementation assumes an arbitrary number of dimensions, but
LIP currently supports up to three dimensions. Although the full generality of an arbitrary number
of dimensions is unnecessary, a 4-dimensional table is a minimum requirement. Second and more
importantly, LIP does not currently support different off-table behavior (OTB) depending on the
direction a lookup is off table. Engagement with the LIP development team is ongoing to determine
the best path forward to running on GPUs. The LIP development team is open to collaboration
to get both libraries working together.

The memory footprint of opacity data is modest. In typical production problems opacity table
data will occupy roughly 5–60 MB per material with most use cases falling at the lower end of that
range. This could change in the future with the introduction of NLTE (non-local thermodynamic
equilibrium) tables. Such tables can occupy up to 5 GB. For these larger tables is clear that some

23

kind of memory sharing across MPI ranks would be highly desirable, especially on CPU platforms
or even Sierra. However, as we move to El Capitan, all except the largest tables occupy a small
fraction of GPU memory so such coordination may be unnecessary.

Early attempts to port the client to GPUs have identified issues stemming from the reliance
on inheritance and polymorphism for data classes that must exist on the GPU. The client library
supports different table types, which are implemented as different derivations of OPAC::Table Data.
OPAC::Table Data objects are also responsible for reading and organizing the data by axis when
it is read from the file, which occurs only during initialization (and on the the CPU). To handle
these issues, the logic that deals with accessing the data after it has been read has been split into
an accessor class, which will be created on the GPU. Reliance on smart pointers and other STL
classes also causes difficulty. This issue can be resolved by simplifying the classes that will exist on
the GPU to explicitly remove these dependencies.

2.5 GIDIplus Project

Of the various nuclear data libraries in use at LLNL, only the GIDIplus project has been ported
to GPU-enabled advanced architectures. Supporting only one nuclear data code saves considerable
effort, especially since the legacy libraries like NDF and MCAPM are no longer actively maintained.
GIDIplus is made of many related libraries, of which only MCGIDI needs to run on the GPU as
well as CPU. The other components of GIDIplus, including GIDI, are expected only to run on the
CPU.

GIDI is an I/O library that runs only at problem start up and will not benefit from GPUs.
However, it still can have significant impact on problem run times. The time required for GIDI to
read nuclear data files has been a concern with early versions of GIDIplus. Compared to the older
libraries libNDF and libMCAPM, load times in GIDI are significantly longer. Fortunately, recent
efforts to improve GIDI load times have been successful, and are expected to be released soon for
general use. These efforts are described further in Section 4.5.

The GPU port of MCGIDI is complete. Porting MCGIDI to GPU architectures required three
categories of changes: adding CUDA device declarations to functions, replacing the standard tem-
plate library, and supporting C++ object construction on the GPU.

Functions that need to be callable on the GPU were marked as device functions using a macro
that expands to “ host device ”. This macro should allow for porting to a HIP-based archi-
tecture in the future. Marking functions is a relatively easy task. However, any function running
on the GPU device can call only other functions that run on the device. Member functions in a
number of commonly used C++ library classes (such as std::string) are not device-callable. Hence,
this step required replacing such classes with GPU-compatible versions.

Any C++ classes or functions that used std::string or std::vector had to be modified to use GPU
compatible replacements, MCGIDI::String and MCGIDI::Vector, respectively. The code for these
routines was borrowed from the Monte Carlo transport group, which faced similar issues. The main
difference in between the std:: and the GIDI routines is that internal data pointers are initialized
to nullptr and are assumed to be allocated only once. The first assignment or resize performs the
allocation. These replacement classes are not thread safe, but once they are initialized they contain
only read-only data so thread safety is not a requirement.

This task required most of the porting effort. Coping data associated with MCGIDI objects from
CPU to GPU required a deep-copy. Fortunately, a serialize/deserialize infrastructure originally set
up for MPI broadcasting was available to help. To support serialization for MPI broadcast, each
class implements a serialize() function that takes a mode argument. For each variable in a class,
we have a macro expansion conditional behavior based on the mode. Originally, the modes were

24

Count, Pack, and Unpack.
In the Count mode, the macro expands out to count the number of integers, doubles, characters,

and 64-bit integers needed to represent all the data. After allocating data buffers, the Pack mode
writes each class variable into a buffer of corresponding type. These buffers can broadcast over
MPI or copy to the GPU device. The last of the original modes was Unpack. This unpacks data
in buffers and reconstructs the class with all fields. Some memory operations may need to happen
in this stage. For example, if a class has a MCGIDI::Vector, it will need to resize this object to the
correct size as passed through an int array.

Two additional features had to be added to support copying data to a GPU device. While the
original Unpack memory allocation can work on the GPU, it is very slow and inefficient to call
malloc() on the device. The first main change was to use placement new operation to specify a
memory location to construct the class. Memory pointers were updated based on the size of the
class and any data contained within. In addition, the data also had to align on 8-byte boundaries.
The Unpack routines were updated to handle memory address pointers with 8-byte alignment. On
a GPU device, data array copies were sped up using a threaded copy in chunks of 32 threads (size
of a warp). To better support unpacking to a memory block, a new mode called Memory was added
to the serialize routine. This calculates the size of a continuous data block that can be unpacked
into.

The memory requirement for the cross section tables used by MCGIDI varies considerably
depending on the type of cross sections in use. Multi-group tables typically require roughly 100 MB.
Continuous energy tables can be considerably larger and could consume 5 GB or more.

Looking toward El Capitan, it should be easy to replace CUDA constructs with HIP to target
AMD GPUs. It may be necessary to adjust details such as data alignment, but few difficulties are
expected.

2.6 Cheetah

There are numerous challenges to porting a sophisticated advanced physics package such as Cheetah
to advanced computer architectures based on GPUs. The original library interface relied on a single
function call per zone (hydrodynamic finite element), which was not well suited for advanced GPU
architectures that efficiently process long vectors of operations. To improve Cheetah ’s performance
on GPU architectures, the Cheetah team developed a vector interface, which allows millions of zones
to be processed together. The vector interface required partitioning data which varied by zone from
data that was common to all zones. This partitioning allowed for efficient memory use in a vector
environment. Vector loops are dispatched to the GPU using RAJA to abstract CUDA calls, thereby
maintaining code readability and avoiding vendor-specific code as much as possible.

At the present time, Cheetah is fully functional on GPU-based computers and nearly all common
algorithms and inputs are supported. Routines that perform lookups in the the equation of state
(EOS) database (called cache by the Cheetah team) have been vectorized and optimized for the
GPU. In the case of a cache miss, the physics calculations required to fill a database entry currently
occur on the CPU and can require substantial wall clock time. However, for typical GPU problem
sizes of 106 elements or more, the vast majority of lookups are satisfied in cache and the cost of the
relatively rare misses is easily amortized. Zones tend to be highly correlated, so as the zone count
grows the efficiency of the cache increases. This trend is clearly shown in Figure 13 in Section 3.14.

Unified memory was chosen for use in Cheetah to simplify porting and maintain coherency
between equation of state cache data on the CPU and GPU. Unified memory is allocated through
Umpire calls. For Ares, the host code provides Cheetah with a pre-existing unified memory alloca-
tor, while in ALE3D no such allocator exists, so Cheetah creates its own allocator. Optimizations

25

were performed to reduce large numbers of small allocations. In particular, each cache entry was
a single allocation in the CPU version of Cheetah, while for GPU systems blocked allocation of
flattened data structures was used.

It is well known that optimal memory layout often differs between CPU and GPU. Because
Cheetah targets both CPU and GPU platforms, it is desirable to retain flexibility in memory
layout without forfeiting performance or maintainability. To that end, a set of matrix abstractions
was added through a series of policy-based class templates implemented using the features of
C++11. The design of these templates was motivated by the multidimensional span (mdspan)
ISO C++ standards proposal [1]. A non-owning matrix view is defined with template parameters
specifying the scalar data type, the static and dynamic matrix extents, a layout policy, and an
accessor policy. The layout policy specifies the mapping of dimensional indices to the index of
the corresponding element in vectorized storage; row-major, column-major and arbitrary strided
storage orders are supported. The accessor policy specifies whether restrict (assumed non-aliasing)
semantics or bounds checking should apply to element access. An owning matrix type is also
defined that is additionally parameterized with an allocator, providing support for the various
allocation strategies used by the code in different configurations. Compile-time information is
leveraged for optimization where possible; for example, storage for the row dimension and stride
can be elided when the matrix is statically defined as a row vector. Unsafe implicit conversions,
such as assignment of a column-major matrix view to a row-major view, are either not defined or
excluded from applicable overload sets. In addition to the significant performance benefits afforded
by optimizing memory layout through these matrix abstractions, they also enable scope-based
resource management and add robustness by associating memory layout and extents with the data
and its references.

For cache lookups, great pains were taken to minimize unnecessary usage of GPU global mem-
ory. Manual inlining was used to reduce memory spilling during function calls and reduce the use
of temporary data buffers. To further speed up the code, the dimension of the cache was translated
from a run-time constant into a compile-time constant through C++ templating and a function
dispatch that calls the appropriate concrete template instantiation at run-time. This code trans-
formation had the added benefit of replacing many global memory buffers with register storage
and thread local memory. It also allowed the compiler to unroll all loops over the dimension of the
cache, leading to fewer memory operations and fewer branching instructions.

In addition to providing equation of state calculations, Cheetah can compute the time evolution
of species conversion through kinetic reactions. Because of the disparate time scales between them,
the chemical kinetics and hydrodynamics are usually coupled via operator splitting methods where
each zone is treated as an independent/isolated system. When leveraging GPU hardware to solve
these problems, each zone can be solved by an individual thread and no communication is necessary
between threads. However, due to the branching decisions made in time integration algorithms to
satisfy error tolerance (or accuracy) requirements, thread divergence can become an issue such that
neighboring threads no longer benefit from data parallelism.

To maintain thread coherence, Cheetah ’s strategy for solving kinetics on the GPU is to batch
together all of the zones to be solved on a GPU as a single time integration problem. Batching
eliminates thread divergence, as all zones will be subject to the same integrator logic branches. A
trade-off with this approach is that, if treated independently the zones will not all take the same
number of kinetics sub-steps, while when batching the number of sub-steps is dictated by the stiffest
zone. This means that the total number of kinetics sub-steps on the GPU will be higher than on
the CPU, for constant error tolerance. The time overhead resulting from these extra sub-steps
remains to be quantified, but is expected be small, and less than the gain from maintaining thread
coherence and data-parallelism. The code changes necessary to achieve this strategy involved

26

creating a call path for computing the right-hand-side (RHS) of the kinetics time derivative for
all reacting species and all reacting zones. The resulting function can then be passed to the time
integration algorithms which only need to be modified to use RAJA loops to compute future states.
Within the RHS function, new functions were created that vectorize all of the rate laws supported
in Cheetah. Restructuring was also necessary to efficiently compute EOS information within the
kinetics calculation, and to compute and return kinetics state variables (e.g., viscosity or specific
heat) requested by the hydrocode. All memory used in these routines is CUDA managed memory
and data transfers are minimized by only accessing the vector data within RAJA-CUDA loops (i.e.,
in CUDA kernels).

The Cheetah team is working on two new capabilities that were not employed for this milestone.
They were deemed to be less ready for use at scale in multiphysics applications. The first is the
option to completely pre-fill the cache database on the GPU. Cache pre-filling, when deployed,
would completely eliminate the possibility of a cache miss. This option is especially attractive
for problems with high node counts since the cache filling process is embarrassingly parallel and
can easily be spread across all nodes of a calculation. The second is a cache-based approach to
accelerate the solution of chemical kinetic equations.

Cheetah’s memory use includes 1–100 MB for the EOS cache, depending on input, as well as
some amount of memory for the arrays used to process zones. The latter is believed to require a few
hundred megabytes per hundred thousand zones. However, this has not been rigorously measured
and is likely subject to change as the Cheetah team continues to make improvements in the code.

It is anticipated that the RAJA abstraction will make the transition to El Capitan relatively
easy. Cheetah also uses some asynchronous CUDA calls that will need to be ported to HIP in the
future.

2.7 Summary

Table 3 summarizes the GPU porting status of the PEM libraries in the scope of this milestone.
With the exception of the Opacity Server, all have functional GPU ports that provide at least some
of the library’s capabilities. Of these, LEOS and TDF are the most mature and are in routine
production use. The GPU ports of MSLib, MCGIDI, and Cheetah are still in pre-production. The
Opacity Server GPU port has justifiably been deferred as lower priority until now, but plans to
create a GPU port are taking shape.

Most of these libraries have well understood and localized data structures that are amenable to
explicit copy from CPU to GPU memory. There is a growing appreciation for the role of Umpire
in helping to coordinate memory use between host and libraries, especially memory that is needed
for temporary storage.

Looking toward El Capitan, few problems are expected. Moving to a new GPU architecture is
expected to require much less effort that the initial conversion from CPU to GPU. The libraries
that utilize RAJA will be able to take advantage of the portability built into the abstraction to
target AMD GPUs. Those that are written in CUDA expect to easily take advantage of AMD’s
HIP portability strategy.

27

Parallel Model Memory Model
Typical

Data Size
Porting Status

LEOS RAJA Host-controlled 500 MB In Production

MSLib CUDA Explicit Copy Nearly Zero In Development

TDF CUDA Explicit Copy 11 MB In Production

Opacity
Server

CUDA Explicit Copy 5 MB–5 GB In Development

GIDIplus CUDA Explicit Copy 100 MB–5 GB In Development

Cheetah RAJA
Managed
Memory

1-100 MB In Development

Table 3: Porting status of PEM libraries

28

3 Test Problems

Completion criteria #3 of the milestone is:

3. Define targeted test problems for assessing computational performance that exer-
cise the PEM capabilities studied in this milestone.

This section satisfies this criteria by providing the required test problem definitions as well as
performance results. The IC codes and PEM libraries used by each test problem are shown in
Table 4.

The test problems in this section were run on a variety of LLNL computing platforms. The sys-
tems used can be divided into two classes: Commodity Technology Systems (CTS-1) and Advanced
Technology Systems (ATS-2). CTS-1 refers to the first series of CTS systems delivered starting in
late 2016. A second series of CTS systems (CTS-2) are expected to arrive in March 2022. ATS-2
refers to Sierra, which is the second ATS machine delivered to the NNSA labs. (Trinity was ATS-1.)
Throughout this section, CTS-1 will refer to CPU-based platforms and ATS-2 will refer to machines
that use same node design as Sierra that is based on the Nvidia V100 GPU. Table 5 shows the
characteristics of each system that was used for test problems.

Throughout this report, CPU to GPU speedups are reported on a node-to-node basis. That is,
by comparing performance on one node of CTS-1 to performance on one node of ATS-2.

29

ALE3D Ares MARBL Mercury Ardra

LEOS Hotspot Shape Charge

MSLib
Jetting,

Non-Local

TDF Hotspot

Opacity
Server

Hotspot

GIDIplus Godiva NIF Chamber

Cheetah Barrier

Table 4: The test problem matrix shows the IC code and PEM libraries used for each test problem.

System Type CPU GPU

RZGenie CTS-1 Intel Broadwell (36 cores per node) None
RZTopaz CTS-1 Intel Broadwell (36 cores per node) None
RZAnsel ATS-2 IBM Power 9 (40 cores per node) Nvidia V100 (4 per node)
Lassen ATS-2 IBM Power 9 (40 cores per node) Nvidia V100 (4 per node)

Table 5: Compute systems used for this milestone.

30

3.1 Hotspot Problem

Name: Hotspot Problem (Igniting ICF capsule)
Size: 18,821,096 zones
Code: Ares
Libraries: TDF, LEOS, Opacity Server
Physics: Hydrodynamics, thermonuclear burn, grey radiation diffusion, electron heat conduction

Figure 1: Snapshot of a hotspot simulation showing the electron energy

Description

This problem is used to represent the conditions in the hot spot of an igniting ICF capsule and
tests whether the coupled physics that matters in this regime have been modeled adequately. The
problem is simplified by initializing the geometry with a spherized version of the capsule implosion
at the time of ignition. The conditions of the materials are also initialized to be consistent with
what would be observed at that time.

This problem exercises Eulerian hydrodynamics, thermonuclear burn, grey radiation diffusion,
electron heat conduction, opacity server opacities, and LEOS equations of state. It contains
18.8 million zones.

Additionally, as a variant, the Opacity Client can be used to calculate the interpolations for the
opacity lookups, so that the performance of those lookups can be measured in a realistic setting.

Motivation

• Although simplified, this problem exercises all of the physics used for ICF capsule problems
and should give an accurate context for how PEM libraries are used in this regime.

• Running this problem on Sierra and El Capitan offers increased resolution in the form of
higher zone counts. This scaling study coincides with the range of number of zones per GPU
that users are running (i.e., 500k–4.7M zones per rank).

31

• Problems with this set of physics are currently being run in production regularly and are
considered state of the practice.

3.2 Hotspot Results

We performed a strong scaling study on RZAnsel (ATS-2) and RZGenie (CTS-1). The code on
RZAnsel ran on 1, 2, 4 and 8 nodes using 4 MPI ranks per node. On the RZGenie, we ran it on 4
and 8 nodes for comparison.

For the variant that uses the Opacity Client for lookup functionality, we used only 2 nodes and
8 MPI ranks to simplify analysis and only 10 cycles due to computational cost. This is not the
default method of running problems nor is it recommended.

TDF Analysis

Tables 6 through 8 show the performance of TDF on an 18,821,096 zone Ares simulation of the
Hotspot Problem on RZGenie and RZAnsel. The total runtime of the simulation, the runtime of
TDF in isolation, and the percentage of the total runtime are listed for 1, 2, 4, and 8 node runs.
In Table 7, the run times are given for minimum, average, and maximum times across ranks. In
Table 8, the runtime is given as a percentage of the total runtime for the maximum TDF runtime.

For the same number of nodes, the total simulation time is reduced by about a factor of ten
when going from the CPU-based RZGenie to the GPU-based RZAnsel. TDF is called 19,060 times
within the simulation. Its runtime is also accelerated by roughly about the same factor of 10,
resulting in TDF remaining a negligible percentage of the runtime on both CPU and GPU systems.
In Table 8, we see that the total TDF cost is always within 0.15% of the total runtime even in the
maximum (worst) case.

As the problem is strong scaled, we see that the relative variation in runtime between the
minimum, average, and maximum cases grows significantly. This is because TDF is only needed for
zones with materials involved in TDF reactions, which is not all zones. As the problem is strong
scaled, an increasing number of ranks do not contain zones involved in TDF reactions, driving their
TDF cost to zero. This results in less than ideal strong scaling of TDF cost. However, if we look
at the average cost of the TDF functions over all processors, we see that we are strong scaling
very well. Overall, we see that even on ranks for which the TDF cost is maximum, the percentage
of TDF cost to overall cost remains negligible, so there is currently no concern about needing to
optimize TDF further, even looking forward to El Capitan.

LEOS Analysis

Table 9 shows the performance of LEOS on the Hotspot Problem. We see that at 4 and 8 nodes,
we have a 13.3x and 9.7x speedup respectively. We also see that the percentages of overall runtime
between the CPU and GPU runs are very close, within 0.1%, and following the same trends. The
process-to-process time spent in these routines are fairly consistent, so it doesn’t appear that load
imbalance is a large factor here.

Since the speedups are tracking the hydrodynamics performance well, and the percent of total
runtime is very small, we can say that LEOS is performing well and that we do not anticipate the
need for further optimization.

32

Total runtime (s)
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 109,633 57,006

RZAnsel (GPU) 20,609 11,160 7,516 5,617

Table 6: CPU and GPU total run times on an 18,821,096 zone Hotspot Problem run with Ares.

TDF minimum runtime (s)
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 0.00046 0.00026

RZAnsel (GPU) 18.8 10.6 2.6 0.77

TDF average runtime (s)
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 33.0 17.0

RZAnsel (GPU) 19.3 10.8 5.9 3.4

TDF maximum runtime (s)
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 124 64

RZAnsel (GPU) 19.5 11.1 9.5 7.7

Table 7: CPU and GPU performance of TDF on the same Hostpot Problem of Table 6. The times
are listed for the minimum, average, and maximum time recorded across all MPI ranks. There is
growing variation across ranks as the problem is strong scaled.

TDF maximum % of runtime
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 0.11% 0.11%

RZAnsel (GPU) 0.10% 0.10% 0.13% 0.14%

Table 8: CPU and GPU performance of TDF on the Hotspot Problem as a percentage of the total
runtime from Table 6. The percentage is for the maximum cost across MPI ranks. The cost of
TDF is reduced on the GPU in proportion with the rest of the simulation, keeping it a negligible
percentage of the total cost.

33

LEOS max processor runtime (s)
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 643 309

RZAnsel (GPU) 126 75.1 48.3 31.9

LEOS percentage of runtime
1 Node 2 Nodes 4 Nodes 8 Nodes

RZGenie (CPU) X X 0.59% 0.54%

RZAnsel (GPU) 0.65% 0.70% 0.69% 0.59%

Table 9: LEOS runtime cost. LEOS takes less that 1% of runtime on both CPU and GPU versions
of this problem.

Opacity Client max processor runtime (s)
Opacity Client Native Interpolation

RZGenie (CPU) 642 142

RZAnsel (CPU) 1638 417

RZAnsel (GPU) 1475 0.47

Opacity Client percentage of cycle time
Opacity Client Native Interpolation

RZGenie (CPU) 28.6 8.1

RZAnsel (CPU) 49.3 20.0

RZAnsel (GPU) 98.7 2.8

Table 10: Opacity Client costs on 2 nodes, 8 MPI ranks, 10 cycles. The Opacity Client requires
a large fraction of the runtime, especially when the GPU is used for the rest of the problem. The
Ares native interpolation (which runs on the GPU) provides much better performance.

Opacity Server Analysis

Table 10 shows performance using both the native interpolation scheme in Ares and the Opacity
Client’s interpolation scheme. The RZAnsel CPU run is running the Ares code entirely on the
Power9 CPU.

The RZAnsel CPU and GPU builds with the Opacity Client have similar run times, but the
GPU runtime is slightly faster. Even in the GPU build, Opacity Client lookups are running on
the CPU (the client library is not ported to GPU yet), but the overall runtime benefits from Ares
packing and unpacking the data for the Opacity Client call on the GPU. This shows that that even
with the overhead of transferring data from CPU to GPU, running parts of the calculation on the
GPU is more efficient than running solely on the CPU (with large enough mesh sizes).

Comparing RZAnsel (Power9) to RZGenie (Intel Broadwell) CPU performance, both the native
and the Opacity Client lookups perform significantly worse on a per-core basis on RZAnsel compared
to the RZGenie, although the Opacity Client suffers from a larger slowdown.

The native interpolation on the GPU is the only run where the interpolation time maintains the
fraction of total run time observed on a CPU architecture. Running the Opacity Client lookups on
the CPU dominates the runtime. Performance takes a large hit not only because the interpolation
isn’t getting speed up from GPU execution, but also because in runs with one rank per GPU, only

34

4 out of the 40 cores on the system are active. Although the opacity interpolations are not a large
percentage of runtime on current CPU platforms, if interpolation remains on the CPU while the
rest of the code is accelerated on the GPU, interpolation quickly becomes a bottleneck.

Summary

The Hotspot results show that in our default configuration, TDF and LEOS both have speedups
that are comparable to the hydrodynamics and are considered to be running well. As we strong
scale, we start to see hints of increasing load imbalance, which prevents the libraries from strong
scaling perfectly. Overall, this is of little concern due to the very small percentages of the runtime
that are utilizing TDF and LEOS.

The variant using the Opacity Client lookup functionality shows that its inability to utilize the
GPU will cause the lookups to quickly dominate the overall runtime of the problem if it’s used in
this way. If codes plan to use the client interpolation on Sierra or El Capitan, it must be ported
and tuned in order to keep up with the rest of the code.

35

3.3 Shaped Charge Problem

Name: BRL81 Shaped Charge (Shaped Charge)
Size: 14M quadrature points
Code: MARBL
Libraries: LEOS
Physics: ALE hydrodynamics, high-explosives, elasto-plasticity

Figure 2: BRL81 Shaped Charge: Medium Resolution 2D Model (left) and BRL81 Shaped Charge
with off-axis detonation: Low Res 3D Model (right).

Description

The BRL81a shaped charge is a device which focuses the pressures of a high explosive onto a
metal “liner” to form a hyper-velocity jet which can be used in many applications, including armor
penetration, metal cutting and perforation of wells for the oil/gas industry [18]. Modeling such a
device requires multi-material compressible hydrodynamics with general equations of state for the
various materials, high-explosive burn and elasto-plasticity.

The calculation is using ALE for its hydrodynamics. It uses the Jones-Wilkins-Lee (JWL)
equation of state for the high explosive, which is implemented as a native model in MARBL. It
uses elastic-perfectly plastic and Steinberg-Guinan strength models, which are also natively in the
code. Additionally, it uses LEOS tabular EOS for every material, except for the high explosive.

We are interested in three mesh resolutions (low, medium, and high) for both 2D and 3D
models. The low-resolution 3D model consists of 14,346,240 quadrature points (224,160 quadratic
hexahedral elements with 64 quadrature points each) and can currently be run in MARBL using
12 GPUs (3 nodes of RZAnsel). Running at higher resolutions scales the problem by successive
factors of eight: 96 GPUs (24 nodes) for the medium resolution model and 768 GPUs (192 nodes)
for the high resolution model.

36

For MARBL, we employ a high-order finite element based ALE approach to this problem
involving three stages:

1. High-order Lagrange phase multi-material hydrodynamics on a moving, unstructured, high-
order (NURBS) mesh [14], including use of PEM libraries for equations of state and material
constitutive models

2. Non-linear, material adaptive, high-order mesh optimization using the TMOP method

3. High-order continuous (kinematic) and discontinuous (thermodynamic) Galerkin based remap
using flux corrected transport (FCT)

All three phases of the ALE algorithm are done on the GPU using high-order finite element
operators provided by the MFEM library using the partial assembly (PA) numerical technique,
where global matrices are not assembled, but instead have their action on vectors computed on
the fly. This is computationally advantageous for GPUs since it involves batched computation of
small, dense tensor contractions. The PEM libraries perform their operations in batches of element
quadrature points in parallel on the GPU during the Lagrange phase.

Motivation

• This problem is a good stress test of the ALE hydrodynamics in MARBL and running this
problem at very high resolutions in 3D is important for studying the hydrodynamics of hyper-
velocity jet formation. There are still outstanding questions as to the cause of jet instabilities
which are experimentally observed. Having a new code with a high order algorithm model a
shaped charge in 3D at very high resolution will help bring a new perspective on this problem.

• We are also interested in applying design optimization techniques to shaped charges to explore
means for improving the shape and velocity of the jet. This will require performing large
ensembles of 3D calculations to span a parameterized “design space” which will then be used
to train a machine learned surrogate for use in optimization.

3.4 Shaped Charge Results

We performed a strong scaling study on LLNL’s Lassen (ATS-2) and RZTopaz (CTS-1) clusters
on the low-resolution variant of MARBL’s 3D Shaped Charge Problem. In the remainder of this
section, we will refer to these systems as ATS-2 and CTS-1, respectively.

The problem consists of 14,346,240 quadrature points (64 quadrature points for each of the
224,160 quadratic hexahedra). Our scaling study ran on 3, 6, 12 and 24 nodes using 4 MPI
ranks per node on ATS-2 and 36 MPI ranks per node on CTS-1. To ensure that we measured
the behavior of the problem at later times, we ran the code to t = 15 microseconds (out of
the total t = 35 microseconds in the full run). We designed and ran our scaling study using
Maestro [13], captured run metadata using Adiak [2] and hierarchical performance data using
Caliper [8] annotations.

Table 11 and corresponding Figure 3(a) compare the node-to-node strong scaling performance
for MARBL’s timeStepLoop annotation, which includes the runtime for the simulation’s time
steps, but not its initialization times. For the Shaped Charge Problem, timeStepLoop accounts for
approximately 97% of the total runtime on ATS-2 and 99.9% of the runtime on CTS-1.

Tables 11 through 13 compare the node-to-node strong scaling performance of LEOS on our
14 million quadrature point MARBL simulation of the Shaped Charge Problem on CTS-1 and ATS-
2. As a proxy for the actual runtime within LEOS, we measured the ComputeMaterialProperties

annotation within MARBL. This includes all calls to LEOS within a hydrodynamics time step,

37

Total runtime (s)
3 Node 6 Nodes 12 Nodes 24 Nodes

CTS-1 77,218 41,952 20,839 10,326

ATS-2 5,340 2,964 1,766 1,168

Table 11: CPU and GPU run times for the timeStepLoop annotation on a 14M quadrature point
Shaped Charge Problem run with MARBL.

LEOS minimum runtime (s)
3 Node 6 Nodes 12 Nodes 24 Nodes

CTS-1 181.9 86.1 41.9 21.2

ATS-2 37.9 9.5 6.0 4.3

LEOS average runtime (s)
3 Node 6 Nodes 12 Nodes 24 Nodes

CTS-1 620.3 299.6 150.7 77.2

ATS-2 57.2 31.6 16.7 11.6

LEOS maximum runtime (s)
3 Node 6 Nodes 12 Nodes 24 Nodes

CTS-1 1520.8 740.2 461.1 234.8

ATS-2 73.2 46.4 29.4 23.7

Table 12: CPU and GPU performance of the ComputeMaterialProperties annotation, which
contains all LEOS calls within a hydrodynamics time step on the same Shaped Charge Problem of
Table 11. The times are listed for the minimum, average, and maximum time recorded across all
MPI ranks. There is growing variation across ranks as the problem is strong scaled.

LEOS maximum % of runtime
3 Node 6 Nodes 12 Nodes 24 Nodes

CTS-1 1.97% 1.76% 2.21% 2.27%

ATS-2 1.37% 1.56% 1.67% 2.03%

Table 13: CPU and GPU performance of the ComputeMaterialProperties function, which con-
tains all calls to LEOS on the same Shaped Charge Problem of Table 11. The percentage is for the
maximum cost across MPI ranks. The cost of LEOS is reduced on the GPU in proportion with the
rest of the simulation, keeping it a relatively low percentage of the total cost.

38

as well as some additional kernels related to processing the material data. It contains six kernels
for each of the seven materials in the Shaped Charge Problem and is called twice within each
Lagrange time step in the simulation. About half of runtime within a ComputeMaterialProperties

annotation takes place within the LEOS (see Figure 4 for a breakdown of kernel calls within a single
instance of this annotation in a 3-node run on ATS-2). To ensure that we’re properly capturing the
timings for kernels that are launched asynchronously, we added explicit cudaDeviceSynchronize()
calls at the beginning and end of the ComputeMaterialProperties function.

These tables list the total runtime of the whole simulation, the runtime of LEOS in isolation,
and the percentage of the total runtime for each run in our scaling study. Table 12 lists the
minimum, average, and maximum ComputeMaterialProperties times across ranks, while Table 13
lists the maximum LEOS runtime as a percentage of the timeStepLoop runtime. We observe
that ComputeMaterialProperties cost is always less than 2.5% of the total runtime, even in the
maximum (worst) case. Interestingly, the relative cost of ComputeMaterialProperties is lower
on ATS-2 than on CTS-1 by around 0.65% at low node counts and by around 0.25% at high node
counts.

Comparing the strong scaling across architectures, we observe that for the same number of
nodes, the total simulation time is reduced by about a factor of 15 for low node counts and 9 for
high node counts when going from the CPU-based CTS-1 to the GPU-based ATS-2. As can be
seen in Figure 3, the runtime for ComputeMaterialProperties (right chart) tracks nicely with the
observed strong scaling for the overall simulation (left chart). Its runtime is also accelerated by
similar (but slightly lower) strong scaling: about a factor of 11 at low node counts to a factor of 7
at high node counts. This load imbalance for LEOS at higher node counts is somewhat expected
for this problem due to how the materials are distributed across the nodes. In particular, the HE
material uses an analytic JWL EOS model, while the other materials use LEOS.

Interestingly, in running this study, the MARBL team observed a previously unidentified strong-
scaling slowdown in its LEOS usage. Although MARBL uses Umpire’s pooled allocators for sharing
memory with its third-party libraries, it had not used this for its LEOS setup, and was instead
directly allocating and deallocating memory within ComputeMaterialProperties, yielding only
around a 2–3× speedup for ATS-2 when compared to CTS-1 at the highest node count. Switch-
ing to pooled allocators for temporary memory increased the code’s relative performance within
ComputeMaterialProperties by more than a factor of 3 for our ATS-2 runs, as can be seen in
Figure 5.

Given that the speedups are tracking the hydrodynamics performance well even at relatively
high node counts where the GPU is no longer saturated, and that the percent of total runtime is
relatively small, we can say that LEOS is performing well and that we do not anticipate the need
for further optimization.

Summary

The Shaped Charge Problem has shown that LEOS’s speedups are comparable to those observed
in other parts of the simulation and is considered to be running well. We see that as we strong
scale, we can potentially see increasing load imbalance, which prevents the libraries from strong
scaling perfectly. However, the MARBL team is not concerned about this due to the relatively
small percentages of the runtime that are utilizing LEOS and the expected load imbalance in this
problem’s setup.

39

21 22 23 24 25

compute nodes [log2]

2 3

2 2

2 1

20

21

22

23

tim
e

pe
r c

yc
le

 (s
) [

lo
g2

]

ATS-2
CTS-1
CTS-1 (ideal_scaling)
ATS-2 (ideal_scaling)

(a) Overall strong scaling

21 22 23 24 25

compute nodes [log2]

2 10

2 9

2 8

2 7

2 6

2 5

2 4

tim
e

pe
r c

yc
le

 (s
) [

lo
g2

]

ATS-2
CTS-1
CTS-1 (ideal_scaling)
ATS-2 (ideal_scaling)

(b) ComputeMaterialProperties strong scaling

Figure 3: Node-to-node strong scaling for MARBL’s Shaped Charge Problem on CTS-1 and ATS-2.
For each platform, we plot the time per cycle against the number of nodes on a log2-log2 plot (how-
ever, please note the differences in y-axis ranges for these plots). (a) The timeStepLoop annotation
includes simulation cycles, but omits initialization times. (b) The ComputeMaterialProperties

annotation includes all calls to the LEOS library. It contains six kernel invocations for each of the
problem’s seven materials.

Figure 4: Screenshot from an Nvidia visual profiler (nvvp) session highlighting the breakdown of
kernel calls within a single ComputeMaterialProperties annotation (red) in a 3-node run of the
Shaped Charge Problem. The LEOS calls within this 5 millisecond interval are primarily in the
blue blocks on the bottom row as well a subset of the smaller purple blocks. The larger purple
blocks within this annotation include calls to MARBL’s material strength library Leilak.

40

21 22 23 24

compute nodes [log2]

2 10

2 9

2 8

2 7

2 6

2 5

2 4

2 3

tim
e

pe
r c

yc
le

 (s
) [

lo
g2

]

ATS-2
ATS-2 (LEOS w/o pools)
CTS-1
ideal_scaling

Figure 5: Sharing memory pools between the codes and the PEM libraries is essential for per-
formance at scale. This chart adds an additional scaling study run ‘ATS-2 (LEOS w/o pools)’
(orange) to the data from Figure 3(b). The latter was run on the same MARBL code, but did not
use LEOS’s Umpire-based memory pools to share memory resources between MARBL and LEOS.
This imposed around a 3× runtime cost relative to the runs that utilized this feature.

41

3.5 Jetting Defect Problem

Name: Jetting Defect Problem (Focused physics experiment)
Size: 600k–5.7M zones
Code: ALE3D
Libraries: MSLib, LEOS
Physics: Hydro, MSLib, LEOS

Figure 6: Jetting Defect Problem setup: the setup represents an experiment in which a target plate
of Sn with a groove is impacted by a Sn flyer plate. This “symmetric impact” is captured by the
Sn target plate impacting a symmetry plane at half of the speed of the Sn flyer plate. The plots
show density, with (left) the initial condition and (right) a condition roughly 0.5 microseconds after
impact. A jet has formed from the groove, and there is significant porosity formation (low density
material) in the target plate due to release wave interactions producing tensile conditions.

Description

A shock wave is driven into a plate of tin with a groove (surface defect), and the interaction of the
shock with the groove produces a jet of material. The conditions are akin to those examined both
in gas gun plate impact experiments and in laser-driven surface defect experiments, and features
of the jet formation and breakup are of interest. This problem involves significant advection as the
jet is formed and streams through the mesh, and it uses the Eulerian mode in ALE3D. Overall,
this is a relatively simple problem in terms of the number of physics packages active.

MSLib is used in the tin target material and a simple gamma-law gas is used in the surrounding
material. Within MSLib, the sub-models are given in Table 14.

sub-model type number model name

shear modulus 12 curve-analytic
yield surface 115 j2-void

strength 209 PTW
EOS 310 LEOS

damage 400 Johnson-Cook

Table 14: MSLib sub-models used in the Jetting Defect test problem

42

Motivation

• Flow instabilities such as Rayleigh-Taylor and Richtmyer-Meshkov instabilities are of general
interest. The formation of jets from surface defects offer a means of examining the influence
of material response across a range of conditions explored by varying the shock strength and
geometric features of the defect.

• In 2D, this problem does not require GPUs or Sierra. However, 3D features of the jet formation
and breakup are of interest and well-resolved versions of such 3D calculations would require
extensive resources; hence making them suitable problems for the GPUs.

• For the graphics provided above, the simulation is run in 2D plane strain with 2,058,120 zones
and 144 ranks on RZTopaz. The resolution is controllable on the command-line and a coarse
version of the problem can capture gross features of the jet formation using ∼105 zones.

• The material model used for this simulation is considered state of the art. Using LEOS
table 503, phase fractions are provided for the beta, gamma, and liquid phases of tin.
These phase fractions are then used in a mixture theory within the material model, with
distinct behaviors for the three phases. A simpler Mie-Gruneisen EOS version of this problem
is also available for comparison, and in that model the melting transition is idealized as being
abrupt.

• Aspects of the material model are described in [3] and in [16].

3.6 Jetting Defect Results

We performed a strong scaling study on RZAnsel (ATS-2) and RZGenie (CTS-1), with results
shown in Tables 15, 16, and 17. As noted in Section 2.2, at the time of the execution of the timing
runs shown here, work is still in progress to have MSLib call LEOS on GPUs, using device-callable
single-point LEOS functions. Thus the timing runs are instead conducted using a Mie-Grüneisen
EOS within MSLib.

For the 1-node results shown in the table, there is a speedup of roughly 8.6× in going from
execution on the CPU-based CTS-1 node to the GPU-based ATS-2 node. While further CPU and
GPU performance enhancements to MSLib would be of significant benefit, this speedup is consistent
with expectations for this kind of hydro problem with advection. With an increase in the number
of nodes on ATS-2, the speedup is less than the ideal value, but this is not surprising given that
on 8 nodes there are only ∼175k zones/GPU. On CTS-1, with an increase in the number of nodes
the speedup is somewhat better than ideal. This may be due to the memory requirements being a
better fit for a larger number of nodes on the CPU-based CTS-1 platform.

More detailed profiling results are also given in the table, but they provide somewhat limited
information given that they are collected only for rank 0 of the parallel job. Refinement in how
ALE3D collects these profiling data would be helpful in forming a more complete picture. It is
however worth noting that the map calls take more time than expected on the GPUs. The map

calls involve less computational work than the getResponse calls, and on the CPU map calls take
about 30% of the time required for the getResponse calls. One the GPU, the map calls take as
much or even more time than the getResponse calls. This may point to a problem with memory
management or the like, and the issue is worth further investigation.

43

Total runtime (s)

1 Node 2 Nodes 4 Nodes 8 Nodes

CTS-1 49709 25177.6 12356 5992.5

ATS-2 5776 3773 3048.7 2382

Table 15: CPU and GPU timing results on a 5,704,200 zone Jetting Defect Problem run
with ALE3D, indicating a ∼8.6× speedup for the 1-node case in which there are roughly
1.4M zones/GPU.

MSLib getResponse runtime (s), rank 0

1 Node 2 Nodes 4 Nodes 8 Nodes

CTS-1 10932 5213 4902 2327

ATS-2 1232 710 388 205

MSLib getResponse % of runtime, rank 0

1 Node 2 Nodes 4 Nodes 8 Nodes

CTS-1 22.0 % 20.7 % 39.7 % 38.8 %

ATS-2 21.3 % 18.8 % 12.7 % 8.6 %

Table 16: Timing data for constitutive model update (getResponse) calls on rank 0. In the 1-node
case the getResponse calls consume roughly the same fraction of the wall clock time on CTS-1
and ATS-2 architectures.

MSLib map runtime (s), rank 0

1 Node 2 Nodes 4 Nodes 8 Nodes

CTS-1 3653 1743 1527 688

ATS-2 1133 622 457 284

MSLib map % of runtime, rank 0

1 Node 2 Nodes 4 Nodes 8 Nodes

CTS-1 7.3 % 6.9 % 12.3 % 11.5 %

ATS-2 19.6 % 16.5 % 15.0 % 11.9 %

Table 17: Timing data for post-advection “fixup” (map) calls on rank 0. The map calls are consuming
an unexpectedly large fraction of the wall clock time on the ATS-2 architecture, suggesting that
there may be an issue that requires further attention. These map calls are not computationally
intensive.

44

3.7 Nonlocal Problem

Name: Double Edged Notched Tension (DENT) Problem (Material Failure)
Size: 7,853,734 zones
Code: ALE3D
Libraries: MSLib
Physics: Hydro, MSLib, non-local machinery

5us 15us 17us 19us 25us

Figure 7: Non-local problem setup: a schematic of the Double Edged Notched Tension from [17]
and simulation results for the axial component of velocity, showing the progression to complete
failure.

Description

In the 3D Double Edged Notched Tension (DENT) Problem, a plate of finite thickness is pulled in
the direction perpendicular to notches located on either side of the plate. The problem is single-
material and uses Lagrangian hydrodynamics. As shown in the graphic above, the extension is in
the vertical direction. The schematic is from [17]. Stress concentrations at the notch tips drive
crack growth and failure of the plate. In the figure above, which shows the axial component of the
velocity, we see progressive localization of the velocity gradient into the central portion of the plate
through which the cracks propagate, culminating in the complete failure of the plate as the cracks
meet in the middle. The 3D nature of the problem manifests in the finite thickness of the plate
influencing the stress distributions that drive crack growth.

With reference to the above schematic, for this problem we have a = 2 cm, W = 6 cm, and
t0 = 0.4 cm.

For treatment of material failure, the MSLib constitutive model uses a porosity-mechanics-based
approach with aspects of the model described in [4]. The model includes non-local computations,
which amount to performing a convolution integral, and are performed within ALE3D each time
step and are provided to MSLib as auxiliary data.

The single material in the problem is parameterized for Al6061-T6, and the associated MSLib

45

sub-model type number model name

shear modulus 6 RING
yield surface 124 NP

strength 209 PTW
EOS 304 LEOS

damage 499 dummy

Table 18: MSLib sub-models used in the DENT test problem.

sub-models are given in Table 18. We note that, unlike in Section 3.5, a damage model is not used
because the yield surface model includes a treatment of porosity.

Transitions in zone size along the axial extension direction are used to concentrate zones in the
vicinity of the propagating cracks. This induces variations in the number of zones within the cutoff
radius in the non-local calculations, and thus in the workload per zone. The domain decomposition
does not currently account for these differences in workload, and load imbalance is thus expected
in this test problem. However, this load imbalance is not a salient feature of common use cases in
fragmentation problems given that a refined mesh is needed throughout the fragmentation problems
to capture the localization behaviors that are precursors to crack formation.

Motivation

• There is significant programmatic interest in modeling material failure and associated phe-
nomena such as fragmentation. In the progression to failure, say by the nucleation and
growth of porosity, the material becomes weaker. While physically motivated, this constitu-
tive behavior produces mesh-dependence in numerical implementations due to the tendency
of deformation to localize into narrower regions with mesh refinement. This results in a re-
duction in energy dissipation with mesh refinement and non-convergent behavior. One means
of mitigating this effect is to introduce a length scale, which can be associated with the char-
acteristic spacing of relevant microstructural features. Here we will make use of a non-local
implementation that involves a convolution integral to compute the non-local values to be
used in the constitutive model. This approach introduces a length scale associated with the
width of the kernel function in the convolution integral. Additional details on this type of
approach to mitigating mesh dependence can be found, for example, in [6].

• This particular simulation does not require GPUs or Sierra to run. However, because of
the expense of the non-local method and the resolutions required to study material failure
adequately, 3D fracture/fragmentation problems will need the use of GPUs to run these
calculations efficiently. Furthermore, we ultimately want the non-local MSLib machinery and
models to work with embedded grids and element erosion. We recently accomplished this goal,
but we cannot run embedded grid problems on the GPUs until the FEusion library has been
successfully ported to the GPUs and have undergone significant testing to gain confidence it
is working correctly as it required a rewrite of the library from Fortran to C++.

• This overall modeling capability is currently state of the art and a work in progress.

3.8 Nonlocal Results

We performed a strong scaling study on RZAnsel (ATS-2) and RZGenie (CTS-1), with results shown
in Table 19. Timing data are collected from simulations spanning 1 microsecond of simulation time.

46

Total runtime (s)
2 Nodes 4 Nodes 8 Nodes

CTS-1 29161 13293 6413

ATS-2 1123 658 339

Table 19: CPU and GPU timing results on a 7,853,734 zone DENT problem run with ALE3D.
Deviations from perfect strong scaling on the GPU is expected due to the relatively small node
count.

None-to-node GPU speedup is approximately 26× for the 2-node case in which each GPU is
responsible for approximately 982k zones. With an increase in the number of nodes on ATS-2
(RZAnsel), the speedup is less than the ideal value, but this is not surprising given that on 8 nodes
there are only ∼245k zones/GPU. As in the test problem in Section 3.6, on CTS-1 (RZGenie) the
speedup is somewhat better than ideal over this range of nodes.

While the GPU port shows good speedup, the use of the non-local capabilities increases runtime
by ∼16× for this test problem (as compared to a simulation that also uses MSLib but without non-
local capabilities active). That is, the non-local calculation dominates the overall simulation time,
and further improvements in computational performance are desirable. The relative cost of running
non-local depends on the details, especially the characteristic element size compared to the non-
local cutoff radius. In future work, we will examine the use of a different kernel function in the
convolution integral that is, for the same characteristic length scale, amenable to a shorter cutoff
radius.

The primary performance bottleneck in the neighbor evaluation on the GPUs is access to global
memory. The use of shared memory in CUDA to reduce this bottleneck is being investigated. This
involves restructuring the kernel to reduce the number of global memory accesses. In the current
implementation, we see only 10–20% GPU compute utilization. Initial testing of the reworked
kernel shows close to 50% compute utilization.

47

3.9 Godiva Problem

Name: Godiva Criticality Calculations (Criticality k-eigenvalue calculation)
Size: 1 CSG cell or 8,000 mesh cells, 107–108 Monte Carlo particles
Code: Mercury
Libraries: GIDI/MCGIDI
Physics: Neutron transport with continuous energy or multigroup neutron cross section data

Figure 8: The Godiva sphere of highly enriched uranium (left) is a common neutron transport
benchmark problem. Godiva in water (right) includes water surrounding the uranium.

Description

Godiva Sphere: The Godiva sphere [11] is a common neutron transport benchmark problem
used to test neutron transport codes and to assess nuclear cross section data. The Godiva sphere
is a bare sphere of highly-enriched uranium composed of a small number of uranium isotopes and
is documented as problem HEU-MET-FAST-001 as part of the International Criticality Safety
Benchmark Evaluation Project (ICSBEP). The test problem is spatially homogeneous and involves
a “fast” neutron spectrum since it only contains uranium. This test problem can be simply mod-
eled using a single constructive solid geometry (CSG) sphere. The goal of the calculation is to
compute the k-eigenvalue for the test problem to determine the criticality of the system. Although
geometrically simple, the test problem requires correct neutron transport physics and nuclear data
to obtain the correct results. Because the problem is geometrically simple, this test problem focuses
on the collision physics implementation in the GIDI/MCGIDI PEM libraries used by Mercury. The
Godiva Problem was simulated using either continuous energy or multigroup neutron cross section
data and 108 Monte Carlo particles.

Godiva In Water: The Godiva in Water test problem [12] is a simple modification of the
Godiva Sphere test problem to include a sphere of water surrounding the sphere of uranium. The
presence of the water makes the problem spatially heterogeneous and introduces additional neutron
physics into the simulation as neutrons from fissions in the uranium now slow down (thermalize) in

48

the water and re-enter the uranium sphere. In addition, this test problem uses a mesh instead of a
single constructive solid geometry cell. As a result, the Godiva in Water test problem includes in-
troduces more complexity in the geometric representation as well as more complex neutron physics.
This test problem serves to investigate GIDI/MCGIDI performance in a simulation with more bal-
anced Monte Carlo algorithmic characteristics. The Godiva in Water problem was simulated using
a mesh with 8,000 cells, either continuous energy or multigroup neutron cross section data, and 107

Monte Carlo particles. We are not investigating thermal neutron scatter law (TNSL) or unresolved
resonance (URR) physics for these test problems.

Motivation

• Correctly and efficiently computing criticality is programmatically important. Collections of
criticality benchmark problems such as the Godiva Problem help validate neutron transport
codes and nuclear data against experiment.

• These test problems are useful for assessing MCGIDI performance as they exercise a range of
neutron transport physics and can be readily scaled to different numbers of nodes on CTS and
Sierra machines by changing the number of Monte Carlo particles. The accurate computation
of the global eigenfunction for these types of criticality calculations, for example to obtain an
accurate prediction of the neutron flux at a diagnostic foil location, can require a significantly
larger number of particles than the calculation of the eigenvalue alone.

• Because the Godiva Sphere is represented by a single CSG element, the particle tracking
kernel is dominated by collision events (since there are no mesh facet crossings to calculate).
In contrast, Godiva in Water employs a fine mesh so that particle tracking will be domi-
nated by facet crossings. Analyzing collision-dominated vs. facet-dominated problems allows
comparison of these two regimes of performance.

3.10 Godiva Results

Both Godiva test problems (Godiva Sphere and Godiva in Water) were run on one node of the
CTS-1 system RZGenie and one node of the ATS-2 system RZAnsel. We report Tracking Time,
which is the time in seconds that Mercury spent simulating the movement of particles through the
problem material. Tracking is the only portion of the calculation affected by MCGIDI and GIDI
data load times are negligible for the problems considered. We also report Segments, which is the
number of times a particle was moved; Collisions, which is the number of times that a particle
movement resulted in a nuclear reaction; Seg/s, which is the quotient Segments/Tracking Time; k,
which is the k-eigenvalue; and σ, which is the standard deviation of k.

We ran Godiva Sphere as a single constructive solid geometry cell with 100 million particles
for 20 cycles. We ran Godiva In Water as a mesh with 8000 zones with 10 million particles for 20
cycles. On CTS-1 we ran with history-based tracking on 1 node with 36 MPI ranks. On ATS-2
we ran with event-based tracking on 1 node with 4 MPI ranks. All ranks had full descriptions of
the problem geometry (i.e. “full-replication”). We ran Mercury 5.26.2 using GIDIplus 3.19.68. We
compiled with the Intel Compiler version 19.1.0 on CTS-1 and the Nvidia CUDA Compiler version
11.2.0-beta on ATS-2.

Comparing MCGIDI to legacy MCAPM on CTS-1

To ensure that MCGIDI performs on par with the legacy MCAPM library, on CTS-1, Godiva
Sphere and Godiva in Water simulations were performed using Mercury with both MCGIDI and

49

MCAPM. As shown in Tables 20 and 21, the run times differed by less than 8%. Confirming that
MCGIDI runs well on CTS-1 provides important context examining its performance on ATS-2; if
MCGIDI was 10x slower than MCAPM on CTS-1 then a 10x speedup on ATS-2 would be worthless.

Evaluating MCGIDI performance on CPUs vs. GPUs

Evaluating the performance of MCGIDI in Mercury is complicated by a challenge not encountered
by other PEM libraries in this milestone. Mercury has internal timers to report the amount of
time spent in various code blocks. Unfortunately, none of these timers specifically isolate the time
spent in MCGIDI. This is due to the fact that MCGIDI is called inside of loops or kernels that also
perform other tasks. Unfortunately, there is no practical way to add timers to collect information
within a GPU kernel. Analysis is further complicated by the fact that when Mercury calls MCGIDI
to perform collision physics, the function arguments include a functor that MCGIDI uses to call
back into Mercury.

Performance data can also be obtained with program counter (PC) sampling tools such as the
Google Performance Tools profiler (for CPUs) and a newly added sampling capability in Nvidia’s
Nsight Compute (for GPUs). The Google profiler worked well for CPU PC sampling on the CTS-
1 platform. While Nsight Compute can perform PC sampling on GPU code, we had difficulties
collecting the data in a reasonable way on the ATS-2 platform. Nvidia support was very respon-
sive and worked with us in a codesign effort to apply existing capabilities of the tool in a new
analysis methodology. Significant progress was made, but unfortunately due to the complexity of
the application, Nsight Compute is not yet fully ready to perform the PC sampling analysis using
our desired methodology. We have reported the issue to Nvidia for follow up engineering work.
Appendix A contains more information about attempts to use Nsight Compute.

Performance for the Godiva Problems on CPU and GPU are shown in Tables 22 and 23. Note
that the fraction of Segments corresponding to Collisions (i.e., Collisions / Segments) is 0.83 for
Godiva Sphere but only 0.14 for Godiva In Water. This verifies that Godiva Sphere is collision
dominated, while Godiva in Water is dominated by other events such as facet crossing. This fraction
also serves as an estimate of the tracking time spent in MCGIDI relative to the rest of the tracking
code.

The collision-dominated Godiva Sphere is ∼6–7x faster on GPUs while the facet-dominated
Godiva in Water is only ∼3x faster on GPUs. Because the performance of collisions depends heavily
on MCGIDI we conclude that MCGIDI has better GPU speedup than other parts of Mercury. This
indicates that MCGIDI does not appear to be a bottleneck that prevents Mercury from achieving
better GPU performance, at least for these problems.

Tables 24 and 25 provide further support for the assertion that the number of collision segments
is a proxy for the amount of time spent in MCGIDI. These tables show the amount of time spent in
MCGIDI on CTS-1 as reported by the Google profiler and demonstrate that Godiva Sphere spends
at least twice as much time in MCGIDI compared to Godiva In Water. These tables also show that
the overhead of PC sampling on CPUs is very small—in the range of 2.6–8%.

Link-time optimization (LTO)

Link-time optimization (LTO) is a form of whole program optimization that performs additional
optimizations across compilation units at link time. Nvidia provides LTO capability in the CUDA
11 toolchain. To evaluate the impact of LTO on the performance of Mercury and MCGIDI, the
Godiva Sphere and Godiva in Water test problems were run on ATS-2 using Mercury compiled
with and without LTO. Tables 26 and 27 show the results. LTO provided speedups in all cases;

50

the maximum speedup was 27.1% for Godiva Sphere, with Seg/s increased from about 80 million
to over 100 million. The downside of LTO is an increase in link-time of about 200x: Mercury
link-time increases from 8 seconds to 30 minutes with LTO. The link-time slowdown is acceptable
for production builds given the speedups that LTO provides.

51

Collision
Library

Cross
Sections

Tracking
Time (s)

Segments
(billions)

Collisions
(billions)

Seg/s
(millions/s)

k σ

GIDIplus CE 455 6.486 5.362 14.3 1.00012 4.88e-05
GIDIplus MG 413 6.489 5.364 15.7 1.00054 2.45e-05
MCAPM CE 485 6.493 5.370 13.4 1.00052 3.15e-05
MCAPM MG 393 6.498 5.375 16.5 1.00074 5.16e-05

GIDIplus Tracking Speedup

CE 1.067
MG 0.952

Table 20: For Godiva Sphere on CTS-1, Mercury runs 6.7% faster with MCGIDI than with the
legacy MCAPM library with continuous energy (CE) cross-sections, and 4.8% slower with multi-
group (MG).

Collision
Library

Cross
Sections

Tracking
Time (s)

Segments
(billions)

Collisions
(billions)

Seg/s
(millions/s)

k σ

GIDIplus CE 344 8.455 1.162 24.5 1.11381 1.32e-04
GIDIplus MG 328 8.446 1.160 25.8 1.11202 8.31e-05
MCAPM CE 370 8.451 1.164 22.8 1.11435 6.14e-05
MCAPM MG 330 8.439 1.162 25.6 1.11259 1.15e-04

GIDIplus Tracking Speedup

CE 1.075
MG 1.007

Table 21: For Godiva In Water on CTS-1, Mercury runs 7.5% faster with MCGIDI than with
the legacy MCAPM library with continuous energy (CE) cross-sections, and 0.7% faster with
multigroup (MG).

52

System Cross
Sections

Tracking
Time (s)

Segments
(billions)

Collisions
(billions)

Seg/s
(millions/s)

k σ

CTS-1 CE 455 6.486 5.362 14.3 1.00012 4.88e-05
CTS-1 MG 413 6.489 5.364 15.7 1.00054 2.45e-05
ATS-2 CE 64 6.486 5.362 101.9 1.00012 4.88e-05
ATS-2 MG 62 6.489 5.364 105.0 1.00054 2.45e-05

ATS-2 Tracking Speedup

CE 7.147
MG 6.683

Table 22: For Godiva Sphere, Mercury runs 7.15x faster on ATS-2 than on CTS-1 with continuous
energy (CE) cross-sections, and 6.68x faster with multigroup (MG).

System Cross
Sections

Tracking
Time (s)

Segments
(billions)

Collisions
(billions)

Seg/s
(millions/s)

k σ

CTS-1 CE 344 8.455 1.162 24.5 1.11381 1.32e-04
CTS-1 MG 328 8.446 1.160 25.8 1.11202 8.31e-05
ATS-2 CE 105 8.455 1.162 80.7 1.11381 1.32e-04
ATS-2 MG 103 8.446 1.160 82.2 1.11202 8.30e-05

ATS-2 Tracking Speedup

CE 3.290
MG 3.191

Table 23: For Godiva In Water, Mercury runs 3.29x faster on ATS-2 than on CTS-1 with continuous
energy (CE) cross-sections, and 3.19x faster with multigroup (MG).

53

Profiled? Cross
Sections

Tracking
Time (s)

PC Samples in
GIDI (%)

Total number of
PC samples

k σ

No CE 455 X 0 1.00012 4.88e-05
No MG 413 X 0 1.00054 2.45e-05
Yes CE 466 24.4 529895 1.00012 4.88e-05
Yes MG 435 16.7 498123 1.00054 2.45e-05

Profiled Tracking Slowdown

CE 1.026
MG 1.052

Table 24: For Godiva Sphere on CTS-1, Mercury spends 24.4% of its runtime in MCGIDI with
continuous energy (CE) cross-sections, and 16.7% with multigroup (MG). The overhead of profiling
is 2.6% for CE and 5.2% for MG.

Profiled? Cross
Sections

Tracking
Time (s)

PC Samples in
GIDI (%)

Total number of
PC samples

k σ

No CE 344 X 0 1.11381 1.32e-04
No MG 328 X 0 1.11202 8.31e-05
Yes CE 374 11.7 401302 1.11381 1.32e-04
Yes MG 349 4.9 383690 1.11202 8.31e-05

Profiled Tracking Slowdown

CE 1.085
MG 1.065

Table 25: For Godiva In Water on CTS-1, Mercury spends 11.7% of its runtime in MCGIDI with
continuous energy (CE) cross-sections, and 4.9% with multigroup (MG). The overhead of profiling
is less than 8% for CE and less than 7% for MG.

54

LTO? Cross
Sections

Tracking
Time (s)

Segments
(billions)

Collisions
(billions)

Seg/s
(millions/s)

k σ

No LTO CE 76 6.486 5.362 85.2 1.00012 4.88e-05
No LTO MG 79 6.489 5.364 82.6 1.00054 2.45e-05
LTO CE 64 6.486 5.362 101.9 1.00012 4.88e-05
LTO MG 62 6.489 5.364 105.0 1.00054 2.45e-05

LTO Tracking Speedup

CE 1.195
MG 1.271

Table 26: For Godiva Sphere on ATS-2, Mercury runs 19.5% faster when compiled with link-time
optimization (LTO) with continuous energy (CE) cross-sections, and 27.1% faster with multigroup
(MG).

LTO? Cross
Sections

Tracking
Time (s)

Segments
(billions)

Collisions
(billions)

Seg/s
(millions/s)

k σ

No LTO CE 112 8.455 1.162 75.4 1.11381 1.32e-04
No LTO MG 107 8.446 1.160 78.9 1.11202 8.30e-05
LTO CE 105 8.455 1.162 80.7 1.11381 1.32e-04
LTO MG 103 8.446 1.160 82.2 1.11202 8.30e-05

LTO Tracking Speedup

CE 1.071
MG 1.043

Table 27: For Godiva In Water on ATS-2, Mercury runs 7.1% faster when compiled with LTO with
continuous energy (CE) cross-sections, and 4.3% faster with multigroup (MG).

55

3.11 NIF Chamber Problem

Name: NIF Chamber Problem (Source-detector modeling)
Size: 87 groups, 80 angles, 350k–56M zones
Code: Ardra, Mercury
Libraries: GIDIplus
Physics: Linear particle transport

Figure 9: Cross-sectional, perspective view of the NIF target bay from VisIt, with slices along the
x = 0 and y = 0 planes (left). Cross-sectional view of the NIF target bay from COG, sliced along
the x = 0 plane (right).

Description

This is a source driven time-dependent problem being run in a 3D model of the NIF target bay, the
chamber, and the surrounding building, but with no equipment in it. It calculates the radiation
dose deposited in various parts of the chamber when an experiment is conducted. This problem
is driven by a small spherical 14 MeV neutron source in the middle of the problem. Alternatively,
we can also use a point-source instead, which would help eliminate ray effects. The problem uses
87 energy groups for the neutrons and 80 angles. The problem has 359 unique isotopes, which is a
relatively large number of unique isotopes and is the primary challenge for the GIDI library.

For this study, we run with 350k to 56M zones, but are interested in higher resolutions. The
problem was translated to COG from a TART input file created by Jeff Latkowski.

56

Motivation

• As noted in the description, the primary purpose of this problem is to serve as a stress test
for loading nuclear data. 359 is a fairly large number of unique isotopes; problems of interest
are typically in the 50–150 range.

• There are currently two options for loading nuclear data in Ardra: the legacy NDF option,
and the newer GIDIplus option. We are interested in using GIDI instead of NDF for data
loading because of the improved physics offered by GIDI and GNDS libraries.

• We have seen that GIDI can take much longer than NDF. The difference in the load times is
a burden for both simulations run by code users and debugging efforts by code developers.
For example, in parametric studies of 1D problems, GIDI can take several minutes per simu-
lation, comprising 50% of the total runtime.

• The porting of Ardra to newer architectures such as Sierra or El Capitan poses an additional
challenge. With simulations on Sierra-like systems, fewer MPI ranks per node are used, lim-
iting the parallelization of the data loading in GIDI. Nonetheless, there have been significant
recent improvements in GIDI. We hope to assess these recent improvements and to re-evaluate
whether GIDI would still be a significant bottleneck in similar problems of interest, especially
on Sierra-like systems.

• On systems like Sierra and El Capitan we would continue to increase zonal resolution, as the
current resolutions are not yet converged.

3.12 NIF Chamber Results

We performed a “weak” scaling study of the NIF Chamber Problem on two different platforms:
Lassen (ATS-2) and RZTopaz (CTS-1). The problem is weak-scaled in the number of spatial zones,
but it is effectively strong scaled in the number of isotopes (359) since this number does not change
with the number of zones or nodes. The nuclear data load time is a fixed problem initialization
cost; the amount of data that needs to be loaded does not change with the number of nodes or
zones. The runtime of 150 cycles of this problem are shown in Table 28 to provide context for
the nuclear data load times. Load times using GIDIplus (version 3.19.67) in Ardra are shown in
Table 29. For comparison, load times using the legacy NDF library in Ardra are shown in Table 30.
All runs were performed using 87 groups, 80 angles, and the ENDL2009.4 nuclear data set. The
single-temperature runs assume that everything is at room temperature; this is the more commonly
employed option for Ardra user simulations.

A separate, smaller study was done using GIDIplus (version 3.19.68) in Mercury on RZAnsel
(ATS-2) and RZGenie (CTS-1). Though the NIF Chamber Problem itself was not run in Mercury,
the cost of loading the same isotopes into Mercury was studied using a problem designed for that
purpose. The data loaded into Mercury is temperature-dependent with 23 different temperatures.
Load times from this study are shown in Table 31.

GIDIplus-Ardra Analysis

The important features of the results from Tables 29 and 30 are:

(1) GIDIplus scales better than NDF with the number of cores.

(2) On a small number of MPI ranks, GIDIplus is much slower (up to an order of magnitude)
than NDF.

57

(3) On a large number of MPI ranks (e.g., on the same order of magnitude as the number of
isotopes), GIDIplus load times are comparable to those of NDF.

(4) The differences in performance for low MPI rank counts is less noticeable if temperature-
dependent data is loaded.

The reason for (1) is that GIDIplus loading is divided into one file per isotope, whereas NDF
loading is divided into 1 file per temperature. The loading of each file can be assigned to a different
MPI rank, and thus, there is more I/O parallelism inherent in the GIDIplus approach. Because
there is only one temperature in this problem, NDF effectively has no parallelism in Ardra, and
its load time does not improve with the number of ranks. (In general, there are two options for
temperature effects in Ardra: single temperature and 22 temperatures. For problems using the
latter option, there is more parallelism, but it is still limited compared to parallelism over the
number of isotopes.)

Features (1)–(3) lead to the following conclusions about the performance of GIDIplus:

(a) GIDIplus is not a bottleneck in problems with a sufficient number of MPI ranks (i.e., similar
to the number of isotopes) or high fidelity simulations (i.e., problems with a large number of
unknowns or time steps). In the former case, its performance is comparable to NDF. In the
latter case, the overall simulation time dwarfs the GIDI load time.

(b) GIDIplus can be a bottleneck when the number of MPI ranks is small relative to the number
of isotopes and/or the problem is relatively small (1D or coarsely discretized). The impact
is felt most strongly when a small problem needs to be run many times (e.g., 1D parametric
studies, debugging).

(c) The bottleneck posed by GIDIplus is worse on GPU architectures such as ATS-2 because
fewer ranks per node (4 instead of 36) are used in standard practice compared to CTS-1
architectures.

In general, whether the GIDIplus load times shown represent a bottleneck is highly problem-
dependent. If the problem is big enough, tens or hundreds of seconds is not significant. If the
problem can be parallelized over enough ranks, the GIDI load times can drop below 6 seconds.
However, if a user is performing a parametric study that involves hundreds or thousands of small
simulations (e.g., 10 minute 1D simulations), then a GIDIplus load time of ∼120–140 seconds is a
significant bottleneck.

Conclusion (c) is particularly evident in the ATS-2 runs in Table 29. For the 1-node simulation,
the GIDIplus load time is over 10% of the total wall time. However, in the 256-node simulation,
it is a negligible 0.6% of the total wall time. We note that these percentages are also impacted by
successes in porting Ardra to GPUs: the problem runs more than 10x faster on a per-node basis in
ATS-2 than in CTS-1. Because GIDIplus loading is entirely on the CPU and there are fewer MPI
ranks for parallelism, the GIDIplus run times do not improve on a node-to-node basis compared to
the rest of the Ardra code which has been ported to the GPU.

GIDIplus-Mercury Analysis

Before comparing the Mercury data to the Ardra data, it is important to note the differences
between the two codes:

• Mercury loads continuous energy data, while Ardra loads multigroup transfer matrices.

• Mercury load times include conversion of GIDI Protares objects to MCGIDI Protares objects.

• Mercury has a different parallelization approach that requires more memory use and extra

58

runtime to broadcast the data between ranks. The memory use scales with the number of
MPI ranks and Mercury ran out of memory with 8 nodes and 32 ranks on CTS-1.

The differences in the parallelization and data needs of Mercury and Ardra are demonstrated
by the results in Table 31. For the same number of nodes, the load times in Mercury are higher
than those in Ardra. In Mercury, several copies of data exist in memory as they are copied and
broadcast to each MPI rank. This limits the number of MPI ranks per node that can be used to
load GIDI data, thus limiting the parallelization and GIDI load times.

59

Number of Zones, Total wall times (s)
1 Node 8 Nodes 64 Nodes 256 Nodes

Zones Wall time Zones Wall time Zones Wall time Zones Wall time

CTS-1 700k 13042 6M 11729 48M 11817 N/A

ATS-2 350k 1188 1.8M 903 14M 881 56M 941

Table 28: Wall times in Ardra for the NIF Chamber Problem with 359 isotopes. All CTS-1 runs
had 36 MPI ranks per node, while ATS-2 runs had 4 MPI ranks per node. The nuclear data for
these runs is single-temperature.

GIDI load time (s)
of Temperatures 1 Node 4 Nodes 8 Nodes 32 Nodes 64 Nodes 256 Nodes

CTS-1 1 32.9 18.0 13.6 N/A 13.7 N/A

ATS-2 1 119.9 N/A 20.8 5.3 5.3 5.3

CTS-1 22 41.2 24.8 18.1 N/A 12.1 N/A

ATS-2 22 140.8 N/A 24.3 9.1 6.0 5.7

GIDI % of total runtime
of Temperatures 1 Node 8 Nodes 64 Nodes 256 Nodes

CTS-1 1 0.25 % 0.12 % 0.12 % N/A

ATS-2 1 10.1 % 2.30 % 0.60 % 0.56 %

CTS-1 22 0.32 % 0.15 % 0.10 % N/A

ATS-2 22 11.9 % 2.69 % 0.68 % 0.61 %

Table 29: GIDIplus 3.19.67 load times in Ardra for the NIF Chamber Problem with 359 isotopes.
All CTS-1 runs had 36 MPI ranks per node, while ATS-2 runs had 4 MPI ranks per node.

NDF load time (s)
of Temperatures 1 Node 8 Nodes 64 Nodes 256 Nodes

CTS-1 1 7.5 14.2 21.3 N/A

ATS-2 1 12.6 12.5 12.8 12.7

CTS-1 22 124 41.2 29.7 N/A

ATS-2 22 94.6 18.1 20.7 20.9

NDF % of total runtime
of Temperatures 1 Node 8 Nodes 64 Nodes 256 Nodes

CTS-1 1 0.06 % 0.12 % 0.18 % N/A

ATS-2 1 1.06 % 1.38 % 1.45 % 1.21 %

CTS-1 22 0.95 % 0.35 % 0.25 % N/A

ATS-2 22 7.96 % 2.00 % 2.34 % 2.22 %

Table 30: NDF load times in Ardra for the NIF Chamber Problem with 359 isotopes. All CTS-1
runs had 36 MPI ranks per node, while ATS-2 runs had 4 MPI ranks per node. The increase in the
load times with the number of ranks for the CTS-1 is likely due to an issue with the MPI reduction
in Ardra.

60

GIDI load time (s)
1 Node, 2 Ranks 8 Nodes, 16 Ranks 8 Nodes, 32 Ranks

CTS-1 373 101 N/A

ATS-2 N/A N/A 73

Table 31: GIDIplus 3.19.68 load times in Mercury for the NIF Chamber Problem with 359 isotopes.

61

3.13 Barrier Problem

Name: Barrier Problem (LX-17 Detonation Physics)
Size: 600k–8M zones
Code: ALE3D
Libraries: Cheetah
Physics: Hydro, High Explosive Reactive Flow

Figure 10: A series of 2 barrier experiments were performed by placing either a 4 mm or an 8 mm
barrier of OFHC copper between LX-17 charges. The donor LX-17 charge was shock initiated
with a 100 mm diameter sabot with a 304 SS flyer impacting the 90 mm diameter target faced
with a thin 304 SS buffer plate. Pressure gauges record the arrival time and peak pressure of the
detonation wave.

Description

This problem exercises ALE hydrodynamics with partial Eulerian relaxation (known as backup
relaxation) and high explosive reactive flow through Cheetah to simulate the results of a barrier
experiment. The problem is typical of many applications in that use of Cheetah was combined with
many other materials, including air, copper, teflon, lexan, and stainless steel. All of these materials
used an LEOS tabular equation of state. Strength of metals was treated with the Steinberg-Guinan
model, while simpler models or no strength was used for other materials. The simulations were run
using a range of resolutions, from 600k to 8M zones.

Motivation

• The Barrier Problem is a good validation problem for shock initiation and detonation of
insensitive high explosive (IHE). This particular experiment used LX-17 for the high explosive.
This problem can be simulated using 2D axisymmetry. The original simulations were used to
evaluate various high explosive models: Cheetah, JWL++, CREST, and Ignition & Growth
(see Figure 12). The unique part of this simulation is that it evaluates how well our models

62

Figure 11: Pressure gauge records of experiment 4810 (left) with a 4 mm barrier and 4811 (right)
with an 8 mm barrier. The gauges placed between the 10 mm slices on the donor side was clipped
due to the scope setting not set adequately.

Figure 12: Barrier simulation compared to experiment

63

can simulate detonation of the high explosive after the shock passes through a 4 or 8 mm
copper barrier. This barrier problem demonstrated that Cheetah had the best timing in
comparison to the other reactive flow models. In general, ALE3D is used to study the
detonation, deflagration, and convective burn processes associated with the energetic response
to thermal and mechanical stimuli of both high explosives and propellants. If ALE3D can
simulate this type of problem, we have good confidence we can use this for larger programmatic
applications, including 3D simulations. Furthermore, we have ported Ignition and Growth to
the GPUs, but users also need the ability to use Cheetah on the GPUs, which provides the
most accurate solution for various scenarios of interest.

• Sierra and El Capitan are not needed for this 2D axisymmetric problem, but Sierra/El Capitan
are needed for large 3D simulations where one needs to use this particular Cheetah reactive
flow model. The 3D programmatic problem of interest currently uses 88 nodes on Sierra and
641,000,000 zones but we need to go to much higher resolutions which would put us around
5 billion zones for the next resolution up.

• Cheetah is used when the highest fidelity results are needed and when the user can afford to
run at the required zone counts. So, for certain classes of problems, such as determining if
and when a high explosive may detonate or when one needs to simulate desensitization of the
high explosive, the current state of practice for ALE3D users is to use Cheetah. The state of
the art will be to utilize Cheetah on the GPUs for large 3D simulations.

3.14 Barrier results

A scaling study varying the number of zones for the Barrier Problem was run on RZAnsel (ATS-2)
and RZTopaz (CTS-1) using 1 node on either resource. A total of 4 GPUs and 4 CPU MPI tasks
were used on the RZAnsel node. The RZTopaz node used 36 CPUs and 36 MPI tasks. The results,
shown in Figure 13, include a ‘rztopaz alpha’ and ‘rztopaz cheetahdev’ curve showing the scaling
for cases run using intel19 builds of the latest version of ALE3D (v4.33.705) which uses Cheetah
v9.0, and the latest develop version of Cheetah (r7336). The ‘rzansel cheetahdev’ results were run
using a clang build of ALE3D with the develop version of Cheetah (r7336). All cases were run out
to 4 microseconds, which is just long enough to detonate the LX17 charge in front of the barrier
plate. The y-axis shows the grind time (µs/element/cycle) and the x-axis shows the total number
of elements in the problem. All cases are using newly (2020–2021) developed Cheetah vector API,
except for the ‘rztopaz alpha’ simulation, which did not use the new Cheetah vector API.

Problems were run once with no pre-filled equation of state cache, and a second time with the
cache from the first run, which represents nearly perfect filling of the cache file. The first case
indicates computational resources required when a problem is first generated from input.

Typically, however, analyses require multiple similar simulations, in which case equation of state
cache files can be reused to increase efficiency. The Cheetah code has the capability to pre-fill an
equation of state cache at the beginning of the simulation using the GPU, but the barrier test case
uses a 4 dimensional cache file that requires up to 4 hours on a single node to fill. Therefore this
option would not be attractive on a single node, but the wall clock time of pre-filling would be
reduced by N if N nodes were used. Future work will focus on further algorithmic development for
cache filling.

The grind time is the average time required to process a single zone during a hydrodynamic
cycle. In this problem the number of elements is increased by reducing the mesh element size for a
fixed physical problem size. This increases both the number of elements and the number of cycles,
due to a reduction in the hydrodynamic time step.

The rztopaz alpha curve shows the results of the current public release of Cheetah on the TOSS3

64

1.6e+04 6.6e+04 2.6e+05 1.0e+06 4.2e+06
elements

3.1e­02

6.2e­02

1.2e­01

2.5e­01

5.0e­01

1.0e+00

2.0e+00

4.0e+00

8.0e+00

1.6e+01

gr
in

d
tim

e
[

s/
zo

ne
/c

yc
le

]

rztopaz_alpha
rztopaz_cheetahdev
rztopaz_cheetahdev_w_cache
rzansel_cheetahdev
rzansel_cheetahdev_w_cache

Figure 13: ALE3D grind time as a function of problem size for CPU and GPU platforms. The
‘w cache’ simulations use a pre-filled cache saved from a previous run. At the largest problem size,
grind time on the GPU is 16x faster than on CPU.

65

platform using the scalar API. As the problem size is scaled up, the grind time reaches a plateau
as the time to process zones dominates the time required to populate the equation of state cache.

rztopaz cheetahdev shows the grind time for the Cheetah vector API. The use of the vector
API allows for more efficient CPU processing of long loops, which leads to a speedup of roughly
40-60%, depending on the number of elements. This shows how code modifications designed for
GPU architectures can also make CPU based code more efficient.

The grind time on the GPU-based RZAnsel system shows a steady reduction as the number of
elements is increased. At the largest scale studied (roughly 8 million elements), the grind time is 16
times less for one node of GPU-based RZAnsel than for one node of RZTopaz. At the largest scales
studied, there is relatively little dependence of the grind time on whether the cache is pre-built or
not, showing that the cache algorithm can be highly efficient if the number of zones is large. This
behavior can be partly explained by the strong spatial correlation between zones in a problem.
Since the zones are highly correlated, adding more zones does not necessarily add more points to
the cache file.

The Barrier Problem is a fairly realistic test case in that not all MPI tasks have zones using the
Cheetah model. Since Cheetah is more expensive than most material models, better load balancing
could further reduce the wall time of this problem. Attempts to improve load balancing by giving
Cheetah zones more weight in the partitioning algorithm did not lead to a significant decrease in
wall time. This is likely due to the small number of partitions (four) in this problem.

We also evaluated the percentage of wall time devoted to Cheetah by various MPI tasks. Fig-
ure 14 shows the results all four MPI ranks of the GPU runs. Cheetah can take a substantial
percentage of the total run time, as shown in the figure. The percentage is less for a pre-built
cache (rzansel cheetahdev w cache) than for a problem where the cache is populated on the fly
(rzansel cheetahdev). The variation is time across ranks is due to load imbalance.

66

1.6e+04 6.6e+04 2.6e+05 1.0e+06 4.2e+06
elements

0

20

40

60

80

100

%
 c

he
et

ah
 0

Cheetah computational time

rzansel_cheetahdev
rzansel_cheetahdev_w_cache

1.6e+04 6.6e+04 2.6e+05 1.0e+06 4.2e+06
elements

0

20

40

60

80

100

%
 c

he
et

ah
 1

Cheetah computational time

rzansel_cheetahdev
rzansel_cheetahdev_w_cache

1.6e+04 6.6e+04 2.6e+05 1.0e+06 4.2e+06
elements

0

20

40

60

80

100

%
 c

he
et

ah
 2

Cheetah computational time

rzansel_cheetahdev
rzansel_cheetahdev_w_cache

1.6e+04 6.6e+04 2.6e+05 1.0e+06 4.2e+06
elements

0

20

40

60

80

100

%
 c

he
et

ah
 3

Cheetah computational time

rzansel_cheetahdev
rzansel_cheetahdev_w_cache

Figure 14: Percentage of total wall time devoted to Cheetah for the GPU runs shown in Figure 13.
Variation in times across the ranks is due to load imbalance.

67

4 PEM Software Porting Highlights and Gaps

Completion criteria #4 and #5 of the milestone are:

4. Highlight porting efforts of PEM software integrated into IC software on Sierra.

5. Identify gaps in current effort to enable future prioritization for LLNL PEM-IC
integrated development for Sierra and El Capitan.

This section satisfies these criteria by reviewing the test problem results in Section 3 to collect
highlights and gaps for each PEM library.

4.1 LEOS Project

Currently the LEOS and LIP libraries are state-of-the-practice and are used in production on Sierra
on a daily basis by all three ASC hydrocodes to run problems utilizing its GPUs. This is a clear
highlight for the LEOS team and the PEM program. The performance improvement using GPUs
for the Hotspot (Section 3.2) and Shape Charge (Section 3.4) problems is roughly 10x, which is
consistent with the speedup seen for other parts of the hydrodynamic algorithm. This speedup
ensures that the cost of LEOS evaluations remains a low fraction of the total runtime on GPU
architectures.

One clear benefit from these test problems is that work on the Shape Charge problem helped the
MARBL team improve strong scaling by a factor of 3 on ATS-2 by switching to pooled allocators
for LEOS setup. They also found that adding the vector LEOS interface on improved performance
on the CPU by about 2x.

The main gap for LEOS is the work still needed to enable LEOS callbacks from MSLib. Also,
collaboration with the Opacity Server team to extend LIP to meet the needs of opacity interpolation
would improve modularity.

Some signs of load imbalance are evident in Table 12. However, the total time spent in LEOS
is still small so this is not a major concern, especially since the domain decomposition is controlled
by the host code.

4.2 MSLib

MSLib has demonstrated an initial GPU capability with good speedups in both the Jetting Problem
(8.6x, Section 3.6) and the Nonlocal Problem (26x, Section 3.8). However, providing the full range
of features and models desired is still a work in progress. MSLib models that make use of LEOS,
Cheetah, or the EOS callback feature do not yet work on GPUs. This is evident in the Jetting
Problem where it was necessary to substitute a Mie-Grüneisen EOS within MSLib, rather than
using LEOS.

The MSLib team also reports that overall performance is slower than desired on both CPU and
GPU. There is a need for vectorization and associated modernization as well as opportunities for
optimization for both types of platforms. While the GPU porting effort has mitigated dramatic
slowdowns that would be seen if MSLib were required to run on the host, it has not addressed core
implementation issues that reduce performance for both CPU and GPU runs.

The benefits of test problems are again evident in the Jetting Problem results in Table 17. The
root cause of the unexpectedly large time spent in map calls has not been found, but identifying
these sorts of issues is a key step in hardening this state-of-the-art code into a state-of-the-practice
capability that can be used in routine production.

68

4.3 TDF Project

The capabilities provided by TDFlib are another highlight of the PEM GPU porting effort. TDFlib
is a state-of-the-practice library on GPUs and it is routinely used in production on Sierra.

Before TDF was ported to GPUs host codes running on GPUs could and did call the unported
TDFlib from the CPU. This required calling CPU functions from inner loops. When those inner
loops were GPU kernels, the routine had to exit the kernel, call the TDFlib routine from the
CPU, and then launch a new GPU kernel to continue the calculation on the GPU. Because of the
accumulation of many kernel launches within a loop, the cost of accessing TDFlib could be double
digit percentages of total runtime in some problems. With the calls accessible from the GPU as

device functions, the overhead became negligible.
Data from the Hotspot Problem 3.2 shows that the GPU-enabled version of TDF is taking less

than 1% of total runtime on the GPU clearly indicating that there is no concern about needing to
optimize TDF further, even looking forward to El Capitan.

The only significant gap for TDFlib is the need to prepare the library for El Capitan. However,
as mentioned in Section 2.3 this should be a fairly modest effort. Taking the El Capitan port as an
opportunity to simplify the copying of reaction data to the GPU will provide a needed improvement
in code simplicity and maintainability.

4.4 Opacity Server

The Opacity Server is the only PEM library considered in this milestone that does not have a
functional GPU port. This is a clear gap.

While there have been good rationales to minimize the priority of porting the client lookup
functions to GPU, wide adoption of the opacity client to provide lookup functionality, and the
resulting gains in software modularity will not occur until lookups achieve good GPU performance.
Examples such as the Hotspot Problem (Section 3.2) clearly show the significant performance
penalty to keeping opacity lookups on the CPU. Fortunately, there is a clear path to creating a
GPU port of the client library and it appears this work can be easily completed before the arrival
of El Capitan. The potential integration with LIP mentioned in Section 2.4 is another encouraging
direction that is well aligned with the LLNL ASC strategy to modularize code and capture the
benefits of re-use.

4.5 GIDIplus Project

The GIDI and MCGIDI components of the GIDIplus library have different use cases and different
challenges. For clarity, we consider them separately.

GIDI

Although GIDI load times are not an issue for long simulations, they can be a significant fraction
of the simulation time for some production use cases. Several factors contribute to long load times
in GIDI:

• ASCII format: processed GNDS libraries are currently stored as large ASCII XML files, which
do not support random access. Loading entire XML files requires significant disk I/O time.

• Converting string to doubles: GNDS stores floating-point numbers as ASCII strings using up
to 15 significant digits. Converting to doubles (over 150 million floating-point numbers for
the n + Cl37 file) requires non-trivial processing time.

69

• Volume of data: GNDS files store more data compared to the legacy NDF and MCF libraries.

GNDS offers another important advantage compared to NDF and MCF files: rather than hav-
ing all targets combined in a single file, GNDS libraries are separated in multiple files, one for each
combination of Projectile, Target and Evaluation (thus the name ‘Protare’). These files are com-
bined into a library using map files. Separating the data into individual Protare files significantly
simplifies uncertainty quantification and sensitivity studies by allowing individual Protares to be
swapped in and out of a library.

Several strides have recently been made towards improving GIDIplus load times. These include
1) introducing a ‘hybrid’ GNDS format with the hierarchy stored in XML and numbers stored in
binary, random-access HDF5 files, 2) exploring the use of compression in HDF5 to further reduce
disk space and I/O requirements, 3) precomputing sums to reduce how much data must be loaded
for typical deterministic transport problems and 4) removing redundant data from GNDS files.

To facilitate the first and second efforts, a new compatibility layer called ‘HAPI’ was introduced
into GIDIplus. HAPI (Hierarchical API) provides a transparent way to read data from either XML
or from HDF5. This capability was recently introduced in a beta version of GIDIplus 3.20, and
is currently being tested in transport codes. A hybrid XML/HDF5 version of the ENDL2009.4
library was also published on LC systems for testing. Because HDF5 supports random access, does
not require a string-to-binary conversion, and can store compressed data, there are opportunities
for improvement in the load times. Preliminary results indicate that loading uncompressed hybrid
XML/HDF5 data through HAPI could speed up the load times by up to a factor of 6.6x. However,
this depends on several factors, such as whether or not the data is cached locally. More research is
needed to fully realize performance gains.

The third effort (precomputing sums of multi-group data) is driven by the fact that users almost
always want full transfer matrices summed over all reactions. While GNDS files will continue to
store transfer matrices by reaction to enable finer grained sensitivity studies, they can also store
the summed matrices to reduce data load times. This effort is not yet complete, and will require
changes both to GIDIplus and to the nuclear data processing code FUDGE (For Updating Data
and Generating Evaluations).

The fourth effort to improve data load times revolves around identifying and removing redundant
data from processed GNDS files. GNDS supports linking from one resource to another, so repeated
data (such as multi-group bin boundaries) should be defined only once with all other instances
replaced by links. A new GNDS format proposal (currently under review) would also support
defining default units in a single location, further reducing redundant data.

One other gap was noted in the integration of GIDI into integrated codes. The burden of
parallelizing file reading with GIDI is left to the integrated code. Because of this, significant
scaling performance differences are seen between the different codes using GIDI (e.g., Mercury vs.
Ardra for the loading of the NIF Chamber isotopes). Moreover, if an integrated code does not
make an effort to parallelize the loading of data with GIDI, the performance will be significantly
hampered. In the future, development of a helper library to parallelize the loading of GIDIplus
data would make GIDI performance more uniform (and more efficient) across integrated codes.

MCGIDI

Based on the performance of the Godiva Problems in Section 3.10 our best assessment of MCGIDI
performance is that the GPU port is performing well enough not to be a bottleneck in Monte Carlo
transport. Unfortunately, our confidence in this assessment is low. There are at least three reasons
for this lack of confidence:

70

• As explained in Section 3.10 and Appendix A we were unable to directly measure the per-
formance of MCGIDI on GPUs. Our assessment is based only on the fact that problems
dominated by collisions (which are calculated by MCGIDI) exhibit higher GPU speedups
than problems dominated by mesh facet crossings. This implies that MCGIDI has better
GPU speedup than other parts of the calculation and therefore is not a primary bottleneck
for performance.

• Performance of Monte Carlo can vary significantly from problem to problem. Obtaining
performance data from a larger variety of problems will be necessary to determine whether
MCGIDI will satisfy performance requirements across production workloads.

• The GPU port of Mercury is under active development and performance continues to evolve
and improve. As various parts of the Monte Carlo calculation are optimized the relative
contribution of MCGIDI will necessarily increase unless MCGIDI is also further optimized.

Clearly it will be necessary to continue to monitor MCGIDI performance as the GPU port of
Mercury is further optimized. Working with vendor partners to develop tools and techniques to
quantitatively assess the performance of MCGIDI on the GPU will also be an ongoing activity.

4.6 Cheetah

The results of the Barrier Problem (Section 3.14) clearly show that Cheetah can obtain good
speedups on GPUs. For simulations with 1–2 million elements per GPU, Cheetah demonstrates a
speedup of approximately 8–16x. This simulation size is consistent with current recommendations
for multiphysics simulations on GPUs so it is likely that similar speedups will be observed in
production problems.

While this is a significant achievement, it is important to remember that this result was obtained
using state-of-the-art code that is still in development branches. Considerable effort will be needed
to test this code and harden it for production. For example, one significant problem observed while
running test problems was that Cheetah’s memory usage pattern led to runaway memory usage by
Umpire. This was not a typical memory leak. Instead, Cheetah’s pattern of storing and freeing
memory when the number of zones sent to the GPU increased throughout the simulation led to
fragmentation of the Umpire memory pool. The fragmented Umpire pool required new allocations
that continually increased pool size until memory was exhausted. The Cheetah team is working
to change its usage of Umpire to avoid this problem, while the Umpire team is developing new
memory management heuristics to reduce the possibility of severe memory pool fragmentation.

The Cheetah team is developing additional techniques to improve performance that were not
ready to be employed for this milestone due to limited code stability and maturity.

Improving performance of cache filling

Performance of the current version of Cheetah is limited by the fact that all of the non-linear solves
that are needed for on-the-fly population of the EOS cache take place on the CPU. Moreover, some
Cheetah inputs cover a larger, more complex region of the cache phase space. Therefore populating
the cache on the CPU may not be an acceptable algorithm for all problems. Two possible strategies
to mitigate this problem are in development.

The first strategy is on-the-fly speculative database filling (OSDF). The OSDF approach uses
the real-time hydrocode EOS demands to generate a large set of EOS points that are likely to be
needed in the next few simulation time steps to further advance the calculation. These specula-
tive thermodynamic points are first sorted, and then their calculation is sent to the GPUs using
asynchronous threading. GPU calculations are performed with a thread-safe, streamlined version

71

of the Cheetah solver, which has a slightly lower success rate than the full Cheetah solver. This
“fast” solver aims to converge directly to solution and employs stricter stopping criteria, thereby
avoiding excessive branching and GPU load imbalance due to exceedingly long times to solution for
certain thermodynamic points. The approach preserves overall GPU performance while avoiding
solution bottlenecks. OSDF is in principle effective for all types of Cheetah thermochemical and
kinetic models, but may require further refinement of speculative points selection, as well careful
computational and memory resource management jointly with the hydrocode to achieve optimal
speeds. One possible disadvantage is that for large scale problems OSDF may compete with the
hydrocode for GPU resources, and thus limit the maximum computational speeds achievable.

To alleviate this problem, a second database filling strategy, up-front dense database filling
(UDDF) has been implemented. UDDF is targeted at lower complexity Cheetah models, with
reduced number of kinetic variables, from 1 to 3, where the EOS database dimensionality is only
3 to 5; such models are in wide use due to their robustness and efficacy. In such cases it may be
advantageous, depending on the size of the hydrodynamic problem, to densely fill the entire cache
database before the start of the hydrodynamic simulations. UDDF employs the full computational
resources allocated to the problem and distributes all the database points to the GPUs for calcula-
tion using the fast solver. Due to GPU memory limitations, it is especially important in this case to
select appropriate bounds for the database variables to avoid generating too many EOS points that
are unlikely to be needed by the hydrocode. Cheetah employs energy bounds based on density and
temperature, which are amenable to intuitive physical limits. For kinetic variables, the concentra-
tion bounds are set either based on their initial values for species that decompose irreversibly, or on
stoichiometric and physical constraints. The generation of databases containing 10s of millions of
points is very efficient and should take a small fraction of simulation times for problems targeting
10’s of nodes. Once the database has been generated, a wide range of hydrodynamic problems
exploring its phase space can be run with maximal computational speeds.

Improving performance of chemical kinetics

The batched vector kinetics employed in Cheetah to solve chemical kinetics has the limitation that
the time step is limited by the stiffest zone in the problem. It is often the case that a small number
of zones in a problem will have unphysical densities and/or energies due to spatially localized
numerical errors. Therefore it is possible that the solution of the entire problem could be limited
by a few bad zones. A new kinetic cache algorithm which interpolates kinetic solutions on the
GPU but solves them on the CPU does not have this limitation. This method offers the highest
throughput when a full database of kinetic solutions is known or when the solution of the kinetic
equations is computationally expensive.

Currently the kinetic cache is populated on the CPU. The input grid dimension of the kinetic
cache is one greater than that of the EOS cache; the extra dimension is time. Due to the higher
dimensionality, the kinetic cache can take more evaluations to fill than the EOS cache. However,
less data per entry is stored, so its memory usage is typically similar to that of the EOS cache.
When the kinetic cache is employed, it makes use of the EOS cache, leading to a “double-cache”
algorithm.

The Cheetah team is studying the relative efficiency of the kinetic cache and vectorized kinetics.
The kinetic cache offers roughly 50% speed-up over the more standard vectorized kinetics for simple
chemical kinetic rates once the kinetic cache is populated, but it could offer greater speedups for
more complicated chemical kinetic problems.

72

4.7 Summary

With the exception of the Opacity Server, all of the PEM libraries have demonstrated GPU capa-
bilities with encouraging speedups. In the test problems considered here, the fraction of runtime
used by the PEM libraries on GPUs is as good as on CPUs, indicating that the libraries will not
be a performance bottleneck. Still, there is considerable work to be done to increase the range
of features that are ported and optimized for GPUs, as well as testing and hardening code for
production.

73

5 Conclusions and Recommendations

The information presented in this report fully satisfies all of the milestone completion criteria. We
have summarized the required information on PEM libraries and IC codes, discussed the porting
progress and challenges, defined test problems, and used the results of those test problems to help
identify highlights and gaps of the integration between PEM and IC software.

To conclude the report, significant conclusions, observations, and recommendations from across
the report are collected here for ease of reference and review.

1. The most important highlight of this report is that LEOS, MSLib, TDF, GIDIplus, and
Cheetah have all ported at least some features to the GPU and have demonstrated speedups
similar to other components of multiphysics codes. This significantly reduces concerns that
PEM libraries will be a performance bottleneck on GPUs. While these successes are very
encouraging, continued work is still needed. In particular:

• LEOS and Cheetah should work with MSLib to complete work on callbacks.

• The Cheetah team should continue work on the the GPU solver, the kinetics cache, and
improved cache-filling approaches. These features will improve performance and extend
the range of problems that can be accelerated.

• The MSLib team should expand the number of ported models and pursue modernization
and optimization of their code.

• For GIDIplus, although GIDI load times are not a significant factor for large simulations,
there are use cases where the load time is a bottleneck. Work should be completed to
resolve this problem once and for all. Work to better characterize MCGIDI performance
should also be a priority.

• To improve performance and obtain benefits of modularity, the Opacity Client should
be ported to GPU. As part of this effort, the LEOS team should collaborate with the
Opacity Server team to explore extensions to LIP to support the Opacity Client port.

2. Work will be needed to harden codes for production and improve overall robustness. Expert
help from both IC and PEM teams was frequently needed to complete test problems and
obtain the best performance. Lessons learned will need to be documented for users and
incorporated into codes to provide production-ready capabilities.

3. Coordinating the use of memory and managing the size of data will require continued atten-
tion. This is a multi-faceted problem:

• The memory pool fragmentation problem described in this report is not unique to Chee-
tah. Other codes are experiencing similar issues. Since memory pools are essential for
performance, it will be necessary to identify and implement best practices for their use.
This is likely to include elements such as using different pools for temporary vs. per-
manent data or segregating data by size into different pools. Past coding patterns that
treated all memory allocations equally are likely to lead to problems.

• Using Umpire to coordinate pools between host and libraries is a best practice that
should be encouraged.

• Vector interfaces can consume considerable memory for temporaries. Libraries should be
aware of their needs for temporary memory and seek to minimize it insofar as possible.

• This size of data tables has traditionally been a primary concern for PEM libraries.
However, this may be less of an issue as GPU memory capacity increases. Even large
tables could consume only a small fraction of GPU memory. If it becomes desirable to

74

run multiple MPI ranks per GPU, then facilities to share tables across ranks in GPU
memory would become important, just as they are on CPU platforms.

4. This milestone again demonstrates the high value of test problems. In the course of obtaining
data for this report several performance-limiting issues were found and fixed. Test problems
served as focal point to drive collaboration between teams and resolve problems. Some issues,
such as the pool fragmentation issue in Cheetah, are still to be resolved. However, exposing
such problems is the first step to fixing them. These test problems as well as additional
problems as needed should be used to focus attention on important use cases and identify
needed optimizations.

5. Collecting performance data was not always as easy and straightforward as it could be. Work
should be done to make it easier to collect and analyze performance data, especially for
complex simulations that span hundreds of ranks or more.

• The most obvious example is the collection of fine-grained GPU performance data for
MCGIDI. Finding solutions to that problem will likely require ongoing effort with ven-
dors.

• We also encountered issues collecting data from the internal counters in the codes. It is
a common practice for at least some codes to look at performance data only on rank 0.
Too often this produces a distorted picture. Even when performance timers are collected
across all ranks, methods to analyze the data are ad-hoc.

• We see signs of load imbalance in some test problems. However, load imbalance can be
particularly tricky to measure with in-situ timers. Care should be taken to ensure that
timers are designed and implemented to segregate useful work from idle time due to load
imbalance.

• It would also be beneficial to deploy methods to capture performance data from pro-
duction runs. This would help identify opportunities to improve performance by tuning
run parameters or by identifying code paths for optimization that that are not evident
in cases typically run by developers.

6. The path to El Capitan appears to be smooth. RAJA and HIP are expected to provide
the necessary portability abstractions and the necessary code changes should be minimal. Of
course, there is risk in any architectural transition and teams should be diligent and proactive
to take advantage of early hardware to ensure performance meets expectations and resolve
any issues as early as possible.

75

Acknowledgments

This work would not have been possible without the contributions of many dedicated and talented
people. We gratefully acknowledge the contributions of our contributing authors as well as everyone
who has played a role in developing or maintaining IC codes and PEM libraries.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security,
LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract
DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal li-
ability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States government or Lawrence Livermore National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

76

References

[1] URL: http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html.

[2] Adiak: Standard interface for collecting HPC run metadata. https://github.com/LLNL/

Adiak. Accessed: May 9, 2021.

[3] N. R. Barton, A. Arsenlis, M. Rhee, J. Marian, J. V. Bernier, M. Tang, and L. Yang. A multi-
scale strength model with phase transformation. AIP Conference Proceedings, 1426:1513–1516,
2012. URL: http://dx.doi.org/10.1063/1.3686570.

[4] Nathan Barton. Results from a new Cocks-Ashby style porosity model. AIP Conference
Proceedings, 1793(1):100029, 2017. URL: http://dx.doi.org/10.1063/1.4971654, arXiv:
http://aip.scitation.org/doi/pdf/10.1063/1.4971654, doi:10.1063/1.4971654.

[5] Nathan R. Barton, Robert A. Carson, Steven R Wopschall, and USDOE National Nuclear Se-
curity Administration. ECMech, 12 2018. URL: https://github.com/LLNL/ExaCMech,
doi:10.11578/dc.20190809.2.

[6] Zdenêk P. Baẑant and Milan Jirásek. Nonlocal integral formulations of plasticity and
damage: Survey of progress. Journal of Engineering Mechanics, 128(11):1119–1149,
2002. URL: https://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119), doi:

10.1061/(ASCE)0733-9399(2002)128:11(1119).

[7] B. Beck and C. M. Mattoon. Gidiplus, 2021. URL: https://github.com/LLNL/gidiplus.

[8] D. Böhme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Giménez, M. LeGendre, O. Pearce,
and M. Schulz. Caliper: Performance Introspection for HPC Software Stacks. In Supercom-
puting 2016 (SC’16), Salt Lake City, UT, November 13-18 2016. LLNL-CONF-699263.

[9] P. Brantley, R. Bleile, S. Dawson, S. McKinley, M. O’Brien, M. Pozulp, R. Procassini,
D. Richards, A. Robinson, S. Sepke, and D. Stevens. Mercury user guide: Version 5.26.2.
Technical Report LLNL-SM-560687 (Modification #23), Lawrence Livermore National Labo-
ratory, 2021.

[10] P. S. Brantley, C. A. Hagmann, and J. A. Rathkopf. MCAPM-C generator and collision
routine (Gen2000/Bang2000) documentation (revision 1.2). Technical Report UCRL-MA-
141957, 2003.

[11] J. B. Briggs, editor. International Handbook of Evaluated Criticality Safety Benchmark Exper-
iments. Organization for Economic Co-operation and Development - Nuclear Energy Agency,
NEA/NSC/DOC(95)03/I-IX, Paris, France, 2012.

[12] E. Cullen, C. J. Clouse, R. Procassini, and R. C. Little. Static and dynamic criticality: Are
they different? Technical Report UCRL-TR-201506, Lawrence Livermore National Laboratory,
November 2003.

[13] F. Di Natale. Maestro workflow conductor, 6 2017. URL: https://www.osti.gov/biblio/
1372046.

[14] V. A. Dobrev, Tz. V. Kolev, and R. N. Rieben. High-order curvilinear finite element methods
for lagrangian hydrodynamics. SIAM Journal on Scientific Computing, 34(5):B606–B641,
2012.

77

http://open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html
https://github.com/LLNL/Adiak
https://github.com/LLNL/Adiak
http://dx.doi.org/10.1063/1.3686570
http://dx.doi.org/10.1063/1.4971654
http://arxiv.org/abs/http://aip.scitation.org/doi/pdf/10.1063/1.4971654
http://arxiv.org/abs/http://aip.scitation.org/doi/pdf/10.1063/1.4971654
https://doi.org/10.1063/1.4971654
https://github.com/LLNL/ExaCMech
https://doi.org/10.11578/dc.20190809.2
https://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
https://github.com/LLNL/gidiplus
https://www.osti.gov/biblio/1372046
https://www.osti.gov/biblio/1372046

[15] R. D. Hornung, A. Black, A. Capps, B. Corbett, N. Elliott, C. Harrison, R. Settgast, L. Taylor,
K. Weiss, . White, C, and G. Zagaris. Axom, 10 2017. URL: https://www.osti.gov/biblio/
1408513, doi:10.11578/dc.20201027.5.

[16] D.J. Luscher, Nathan Barton, Scott Crockett, Ann E. Wills, Carl Greeff, Leonid Burakovsky,
and Sky Sjue. Working draft 1.1: A proposed common model of multi-phase strength and
equation of state for a tri-laboratory collaboration. Technical Report LLNL-TR-814438 / LA-
UR-20-26489, Lawrence Livermore National Laboratory / Los Alamos National Laboratory,
2020.

[17] T Pardoen, Y Marchal, and F Delannay. Thickness dependence of cracking resistance in
thin aluminium plates. Journal of the Mechanics and Physics of Solids, 47(10):2093–2123,
1999. URL: http://www.sciencedirect.com/science/article/pii/S0022509699000113,
doi:https://doi.org/10.1016/S0022-5096(99)00011-3.

[18] W. Walters. A brief history of shaped charges. Technical report, Army Research Lab, Aberdeen
Proving Ground, MD. Weapons and Materials Research, 2008.

[19] Brett M. Wayne, Nathan R. Barton, and USDOE National Nuclear Security Administration.
SNLS, 9 2018. URL: https://github.com/LLNL/SNLS, doi:10.11578/dc.20181217.9.

78

https://www.osti.gov/biblio/1408513
https://www.osti.gov/biblio/1408513
https://doi.org/10.11578/dc.20201027.5
http://www.sciencedirect.com/science/article/pii/S0022509699000113
https://doi.org/https://doi.org/10.1016/S0022-5096(99)00011-3
https://github.com/LLNL/SNLS
https://doi.org/10.11578/dc.20181217.9

Appendix A Program Counter Sampling

In Section 3.10 Godiva Results we used program counter (PC) sampling to estimate the percent of
Mercury runtime in the GIDIplus library. The maximum possible Mercury speedup that we can
achieve by modifying GIDIplus is given by Amdahl’s law

s(p) =
1

1− p
(1)

where p is the fraction of Mercury runtime in GIDIplus. Table 32 has some example values of s for
different p.

p 0.95 0.50 0.20 0.10 0.01

s 20 2 1.25 1.11 1.01

Table 32: Examples of the maximum possible Mercury speedup s that we can achieve by modifying
GIDIplus when GIDIplus takes a fraction p of the total Mercury runtime.

If p is large then GIDIplus may provide the best opportunity for making Mercury run faster.
Sections A.1 and A.2 describe how we use PC sampling to find p. Section A.3 discusses alternatives
to PC sampling.

A.1 Google Performance Tools PC Sampling

The PC sampling results that we presented in Tables 24 and 25 come from Google Performance
Tools (gperftools). Listing 1 demonstrates how to use gperftools. Lines 2, 4, and 6 are the
code changes required to generate a PC sampling profile. Lines 9 and 10 show how to compile and
link with gperftools. Lines 12 and 13 show how to use the gperftools pprof script to convert
the binary profile to human-readable form.

Listing 2 shows some of the gperftools text report, and Figure 15 shows the gperftools PDF
report. We estimate p by taking the sum of the PC samples in the GIDIplus subtrees and dividing
by the total number of samples. Before we divide we subtract the PC samples in the callback
subtree from the sum5. Table 34 shows how we computed our estimate of p for the continuous
energy Godiva Sphere calculation on CTS-1.

A good PC sampler introduces minimal overhead. Table 24 shows that the gperftools PC
sampler caused the 455 second problem to run for 466 seconds, a slowdown of only 2.6%. We can
increase or decrease the overhead by setting environment variables which modify the PC sampler
settings. For example, gperftools reads CPUPROFILE FREQUENCY=x to set the sampling frequency.
We used the default frequency of 100 Hz.

We are very satisfied with gperftools.

A.2 Nvidia Nsight Compute PC Sampling

We did not present PC sampling results from ATS-2 in this report because of difficulties we encoun-
tered trying to use Nvidia Nsight Compute (ncu). We can not use gperftools on ATS-2 because
gperftools does not sample device code. On ATS-2 we use the tool that Nvidia recommends,
which is ncu. Table 33 compares the gperftools and ncu PC samplers.

5The callback functions that we register with GIDIplus contain Mercury code, not GIDIplus code, so we do not
include them in p. Since it is Mercury code which gets executed as a part of the GIDIplus programming model we
consider it a third category - not GIDIplus code, but not exactly Mercury code either.

79

gperftools ncu

Supported on CTS-1 ATS-2

Slowdown 1.02x to 1.09x 10,000x to ∞ (hangs)

Can sample code on Host only Device only

Designate which code to sample by Calling Start/Stop Kernel name regex

Recompilation required for Executable Libraries and executable

Captures stack traces 3 7

Usable without professional help 3 7

Table 33: Comparison of the gperftools and ncu PC samplers.

Listing 3 shows step 1 to use ncu PC sampling: recompiling all libraries which contain device
code and then relinking Mercury. To save space, library sources can be deleted after compilation
finishes, which is the default behavior of spack. Using the --keep-stage argument tells spack

not to delete them. We do this because ncu needs the sources; ncu will emit warnings or hang if it
cannot find them.

Step 2 is determining a regular expression that matches the name of the kernel(s) that we want
to sample. By default ncu does not sample anything and there is no option to sample everything.
One way to find the name of kernels is to run Mercury with Nvidia’s legacy nvprof and pipe the
output through c++filt to demangle the symbols. Another way is to run Mercury with Nvidia
Nsight Systems (nsys), click the bars in the timeline which correspond to kernels, copy the kernel
name that appears and run the name through c++filt.

Listing 4 shows step 3: invoking ncu to generate the PC sampling profile. Table 35 explains
the ncu arguments that we used.

Listing 5 shows step 4: converting the binary profile to human-readable form. This step
requires opening the binary profile in the ncu-ui GUI, which has to be done on an x86 machine,
and clicking to export the PC profile for each kernel invocation one-at-a-time. This is very tedious.

Listing 6 shows a few lines of the CSV file that we exported in step 4. The CSV contains 85
source files concatenated together. The comma-separated values include the line number in the
source file (value 0), the line of source code (value 1), the number of times that PCs corresponding
to the line were sampled (value 3), and 51 other values.

Listing 7 shows step 5, the final step, parsing the CSV file to find p. The script finds the
boundaries of the source files in the CSV, then takes the sum of PC samples for all lines of source
code. This is the total number of samples. The script then takes the sum of samples for all lines
in GIDIplus files and divides by the total to get p.

Listing 8 shows the output from running the Python script in step 5. The p value in Listing
8 is for a single kernel invocation in a tiny Mercury problem which runs for 13 seconds. Sampling
just 1 kernel invocation makes the problem run for 26 seconds. Since the kernel takes only a
few milliseconds without sampling, it seems that the 2x increase in total runtime comes from a
10,000x slowdown in the sampled code. The ncu slowdown is 6 orders of magnitude greater than
the gperftools slowdown.

We think different kernel invocations may give different p values. One part of the 5-step ncu

workflow that makes looking at different kernel invocations difficult is the tedium of clicking in
ncu-ui to export a CSV for each kernel invocation. Our Nvidia consultant gave us a new workflow
which avoids ncu-ui. The new workflow picks up after step 2 in the previous workflow. We will
now use letters to denote the steps in the new workflow to distinguish them from steps in the
original workflow.

80

Listing 9 shows step A: copying sections and SourcePage.py into place. The sections

directory is part of the ncu installation. Listing 10 shows SourcePage.py, a file that was given to
us by our Nvidia consultant. Lines 57, 63-65, and 67 are our additions. Along with our modifications
to lines 72, 76, and 79, our additions cause SourcePage.py to write the CSV to a file instead of
stdout. We write one CSV per kernel invocation.

Listing 11 shows step B: invoking ncu. We quote an informal email from our Nvidia consultant
who explains the behavior of this new invocation and how SourcePage.py is used:

The key here is that we make a copy of the “sections” directory (which ships with
Nsight Compute) locally and then add our custom file SourcePage.py to that directory.
Then, at the command line, we specify to use this sections directory rather than the
default one in /usr/tce. From then, we can use the tool normally. The invocation I’ve
shown above is the minimal invocation needed to collect just the source counter data,
and right now the custom tooling just collects PC samples and nothing else. You could
also use it with your existing --set detailed if you want additional metrics, as long
as you remember to do the --section-folder specification.

At present, we just loop through all files that contributed to each kernel launch and
print out to stdout the line of source (column 1), the number of samples (column 2),
and the source code (everything else). Please give this a whirl and see if this data would
be useful to you. If so, we can work out the details of finishing it up for exactly what
you need, like summing up over kernel invocations, writing to a file, etc. It’s a pretty
straightforward Python script and will be easy to modify for our needs.

Listing 12 shows a few lines of the CSV file that we exported in step B. The CSV contains 79
source files concatenated together. The colon-separated values are the line number in the source
file (value 0), the number of times that PCs corresponding to the line were sampled (value 1), and
the line of source code (value 2).

Listing 13 shows step C: parsing the new CSV file to find p. One great thing about the new
workflow is that the CSV contains fully-qualified paths so we can be sure which of the 79 files
belong to GIDIplus; it can be difficult to tell with just the basename.

Listing 14 shows the output from running the Python script in step C. Once again, the p value
in Listing 14 is for a single kernel invocation in a tiny Mercury problem. Unfortunately, ncu hangs
if we try to sample more than 1 kernel invocation. Our Nvidia consultant reproduced the problem
and attributed it to a quadratic-time algorithm in SourcePage.py which causes Mercury to appear
to hang because of the large amount of code in the tracking kernel. Once again we quote informal
email correspondence with our Nvidia consultant:

It looks like the issue here is that the algorithm currently written scales really poorly
- the kernel has got O(100k) metric events and for each one we are searching through
your O(100k) lines of source to find the match. So the code is not hanging it’s just
running very very slowly. I am seeing if I can rewrite it to be more efficient.

We enjoyed working with our Nvidia consultant and we will continue to pursue a solution for
PC sampling on ATS-2 until the machine retires. We wish it was easier.

A.3 Alternatives to PC Sampling

Internal timers written in the source code are an alternative to PC sampling. We use internal
timers in Mercury to understand where in the code we are spending our runtime. We do not time

81

GIDIplus because of the overhead that it would introduce. Mercury’s particle processing rate is
between 1 million and 1 billion Hz. Each segment that a particle traverses requires 1 or more
GIDIplus calls. The clock rate of the CTS-1 and ATS-2 processors is order GHz, or 1 billion Hz.
The overhead of starting and stopping a timer at the same frequency as the processor clock rate
would disturb the calculation to the point where no useful information could be obtained.

82

Figure 15: Example PDF report from gperftools PC sampling, taken from https://gperftools.

github.io/gperftools/pprof-test-big.gif. The graph is a bit larger for Mercury but the
structure is the same.

Listing 1: Using gperftools PC sampling.

1 $ cat main.c

2 #include "gperftools/profiler.h"

3 int main(int argc , char **argv) {

4 ProfilerStart (" mypcsamples.pro");

5 foo();

6 ProfilerStop ();

7 return 0;

8 }

9 $ gcc -c -o main.o main.c -I/path/to/gperftools/include

10 $ gcc -o main main.o -L/path/to/gperftools/lib -lprofiler -lunwind

11 $./main

12 $ pprof --text main mypcsamples.pro > mypcsamples.pro.txt

13 $ pprof --pdf main mypcsamples.pro > mypcsamples.pro.pdf

83

https://gperftools.github.io/gperftools/pprof-test-big.gif
https://gperftools.github.io/gperftools/pprof-test-big.gif

Subtree root Sign Samples Percent of total
MCGIDI::Product::sampleProducts + 193920 36.6
MCGIDI::HeatedCrossSectionsContinuousEnergy::sampleReaction + 17229 3.3
MCGIDI::DomainHash::index + 8536 1.6
MCGIDI::HeatedCrossSectionContinuousEnergy::crossSection + 19074 3.6
GIDI Product Handler::push back - 109732 20.7

129027 24.4

Table 34: Estimating p using the gperftools PC sampling profile.

Listing 2: The first 3 lines of the text report from gperftools PC sampling.

1 Total: 529895 samples

2 29732 5.6% 5.6% 32315 6.1% MCGIDI :: binarySearchVector (inline)

3 18601 3.5% 9.1% 46941 8.9% MCGIDI :: Probabilities :: Xs_pdf_cdf1d :: sample

Listing 3: Using ncu PC sampling step 1: recompile libraries which contain device code.

1 $ git clone ssh://git@rz -bitbucket.llnl.gov :7999/ spack/llnl.wci.git

2 $ cd llnl.wci

3 $ git remote add poz ssh:// git@rz -bitbucket.llnl.gov :7999/~ pozulp1/llnl.wci.git

4 $ git fetch poz

5 $ git checkout feature/pozulp1/nvcc_lto_gidiplus

6 $ cd ..

7 $ git clone https :// github.com/spack/spack.git

8 $ cd spack

9 $ git checkout v0 .14.2

10 $ cd etc/spack/defaults

11 $ for f in ../../../../ llnl.wci/*. yaml; do rm -f $(basename $f); ln -s $f; done

12 $ cp config.yaml config.yaml.bak

13 $ sed -i ’s, - $tempdir/$user/spack -stage ,# - $tempdir/$user/spack -stage ,g’ config.yaml

14 $ sed -i ’s, - ~/. spack/stage ,# - ~/. spack/stage ,g’ config.yaml

15 $ sed -i ’s,# - $spack/var/spack/stage , - $spack/var/spack/stage ,g’ config.yaml

16 $ cd ../../../

17 $ lalloc 1

18 $./bin/spack install --no-cache --keep -stage gidiplus@3 .18.125+ cuda%clang@blueos

19 $./bin/spack install --no-cache --keep -stage umpire@4 .1.0+ cuda%clang@blueos

20 $ exit

21 $./bin/spack find -p gidiplus@3 .18.125+ cuda%clang@blueos

22 $./bin/spack find -p umpire@4 .1.0+ cuda%clang@blueos

23
24 # recompile mercury and link it with the libraries we just compiled

25 $./ mbuild --with -nvcc =11 --with -gidiplus =/path/to/gidiplus --with -umpire =/path/to/umpire --make opt

Listing 4: Using ncu PC sampling step 3: invoking ncu.

1 $ lrun -n1 --smpiargs="- disable_gpu_hooks" ncu \

2 --set detailed --import -source on --kernel -regex -base demangled \

3 -k .* PV_Cycle_Tracking .* -c 5 -s 5 -o mypcprofile -f mercury deck.inp

ncu argument Explanation

--set detailed turn on PC sampling
--import-source on avoids “‘File Mismatch” and “File Not Found” errors in the CSV
--kernel-regex-base demangled match regular expression against demangled symbols
-k .*PV Cycle Tracking.* regular expression to use for matching the kernel name(s)
-c 5 sample 5 kernel invocations
-s 5 skip 5 kernel invocations before sampling
-o mypcprofile name of the profile binary file to output
-f mercury name of the executable to run

Table 35: Explanation of ncu arguments that we used.

84

Listing 5: Using ncu PC sampling step 4: Converting the binary profile to human-readable form.

1 $ ncu -ui mypcprofile.ncu -rep

2
3 Click Page: Details (it ’s a dropdown in the upper left of the gui)

4 Select Source

5 Click View: Source and SASS (it ’s a dropdown also upper left)

6 Select Source

7 Repeat for every kernel invocation:

8 Click Copy as Image V (the downarrow in the upper right)

9 Select Export to CSV

10 mypcprofile -0. csv

11 Save

Listing 6: A few lines from the 68,552 line CSV file that we exported in step 4.

1 191," HOST_DEVICE inline MCGIDI_VectorSizeType binarySearchVector(double a_x , Vector <double > const &a_Xs , bool

↪→ a_boundIndex = false) {",,

2 192,,,

3 193," MCGIDI_VectorSizeType lower = 0, middle , upper = (MCGIDI_VectorSizeType) a_Xs.size() -

↪→ 1;",,32,22,47604,153062,9,,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22

4 194,,,

5 195, if(a_x < a_Xs [0]) { , ,4609 ,4571 ,285624 ,765310 ,45 ,0 , Global (4),Load (4) ,64(4)

↪→ ,106754,0,0,0,44974,106757,61783,0,0,0,0,0,0,4436,0,0,0,0,7,0,38,0,0,0,128,0,0,0,0,0,4436,0,0,0,0,7,0,0,0,0,0,128

6 196, if(a_boundIndex) return(0);,,

7 197, return(-2);,,

8 198, },,

9 199,,,

10 200, if(a_x > a_Xs[upper]) { , ,2642 ,2613 ,190416 ,459186 ,27 ,0 , Global (4),Load (4) ,64(4)

↪→ ,106757,0,0,0,44974,106757,61783,0,0,0,0,0,0,2452,0,0,0,0,0,0,29,0,0,0,161,0,0,0,0,0,2452,0,0,0,0,0,0,0,0,0,0,161

11 201, if(a_boundIndex) return(upper);,,

12 202, return(-1);,,

13 203, },,

14 204,,,

15 205, while(1) {,,

16 206, middle = (lower + upper) >>

↪→ 1;,,385,292,633504,1974722,27,,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,1,0,93,0,0,0,291,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,291

17 207, if(middle == lower) break

↪→ ;,,987,811,858024,2295333,49,26661,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,4,0,176,0,0,0,797,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,797

↪→
18 208, if(a_x < a_Xs[middle]) { , ,11840 ,11759 ,585900 ,1821660 ,18 , , Global (4),Load (4) ,64(4)

↪→ ,714172,0,0,0,356544,737667,381123,0,0,0,0,0,0,11355,0,0,0,0,2,0,81,0,0,0,402,0,0,0,0,0,11355,0,0,0,0,2,0,0,0,0,0,402

↪→
19 209, upper = middle;

↪→ },,486,412,585900,1821660,18,,,,,,,,,,,,,0,0,0,0,0,0,0,0,0,0,0,0,74,0,0,0,412,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,412

20 210, else {,,

21 211, lower = middle;,,

22 212, },,

23 213, },,

24 214, return(lower);,,

25 215,},,

85

Listing 7: Using ncu PC sampling step 5: Parse the CSV file to find p.

1 #!/ usr/bin/env python3

2
3 import numpy as np

4 import pandas as pd

5
6 csv = pd.read_csv(’mypcprofile_1.csv ’)

7
8 df = pd.DataFrame(csv[csv[’#’]. isnull ()]. Source.rename(’fname ’))

9
10 colname2mnemonic = {

11 ’Sampling Data (All)’: ’samples ’,

12 # ’Sampling Data (Not Issued)’: ’samples_not_issued ’,

13 # ’Instructions Executed ’: ’instr_execd ’

14 }

15
16 perfile = np.array_split(csv , df.index [1:])

17
18 for colname , mnemonic in colname2mnemonic.items ():

19 quantity = [f[colname].sum() for f in perfile]

20 num_lines_with_quantity = [(f[colname]. dropna () != 0). sum()

21 for f in perfile]

22 df[mnemonic] = quantity

23 df[f’num_lines_with_{mnemonic}’] = num_lines_with_quantity

24
25 df[’percent ’] = 100 * (df.samples / df.samples.sum())

26
27
28 dfmd = pd.DataFrame(index=’GIDI Non -GIDI Total ’.split ())

29 df[’gidifile ’] = df.fname.str.endswith(’hpp ’) | df.fname.str.endswith(’cpp ’)

30 wheregidi = df.gidifile

31
32 num_gidi_files = wheregidi.sum()

33 total_files = df.shape [0]

34 dfmd[’Files ’] = [num_gidi_files , total_files - num_gidi_files , total_files]

35
36 file_edge_index = np.array(df.index.tolist () + [csv.shape [0]])

37 flengths = (file_edge_index - np.roll(file_edge_index , 1))[1:]

38 df[’flength ’] = flengths

39 num_gidi_lines = df[wheregidi]. flength.sum()

40 total_lines = df.flength.sum()

41 dfmd[’Lines ’] = [num_gidi_lines , total_lines - num_gidi_lines , total_lines]

42
43 num_gidi_lines_sampled = df[wheregidi]. num_lines_with_samples.sum()

44 total_lines_sampled = df.num_lines_with_samples.sum()

45 dfmd[’Lines sampled ’] = [num_gidi_lines_sampled ,

46 total_lines_sampled - num_gidi_lines_sampled ,

47 total_lines_sampled]

48
49 num_gidi_samples = df[wheregidi]. samples.sum()

50 total_samples = df.samples.sum()

51 dfmd[’Samples ’] = np.array([num_gidi_samples ,

52 total_samples - num_gidi_samples ,

53 total_samples]). astype(int)

54
55 pct_gidi_samples = df[wheregidi]. percent.sum()

56 dfmd[’Percent ’] = np.array([pct_gidi_samples ,

57 100 - pct_gidi_samples ,

58 100]). round (2)

59
60 ingidi = dfmd.Percent[’GIDI ’]

61 print(dfmd)

62 print(f’\ nTracking kernel spent {ingidi }% of runtime in GIDI ’)

63
64 # Uncomment to show gidi files sorted by percent of samples in file

65 # print(df[wheregidi]. sort_values(’percent ’))

66 # print(df.sort_values(’percent ’))

Listing 8: Output of Python script in Listing 7.

1 Files Lines Lines sampled Samples Percent

2 GIDI 15 13460 311 111280 25.08

3 Non -GIDI 70 55092 1380 332495 74.92

4 Total 85 68552 1691 443775 100.00

5
6 Tracking kernel spent 25.08% of runtime in GIDI

86

Listing 9: Using ncu PC sampling step A: copying sections and SourcePage.py into place.

1 ml nsight -compute /2020.3.0

2 rsync -a $(dirname $(ap $(which ncu)))/ sections .

3 pushd sections; ln -s ../ SourcePage.py; popd

Listing 10: SourcePage.py, which tells ncu to emit the CSV (thus avoiding the ncu-ui GUI).

1 import NvRules
2 import sys
3
4 def get_identifier ():
5 return "SourcePage"
6
7 def get_name ():
8 return "Source Page"
9

10 def get_description ():
11 return "Source metrics"
12
13 def get_section_identifier ():
14 return "SourceCounters"
15
16 def read_file(name):
17 lines = []
18 with open(name , "r") as f:
19 for line in f:
20 lines.append(line.rstrip ())
21
22 return lines
23
24
25 files_cache = {}
26
27 def metric_per_line(action , metric_name):
28 global files_cache
29
30 metric = action.metric_by_name(metric_name)
31
32 num_instances = metric.num_instances ()
33 pcs = metric.correlation_ids ()
34
35 values_per_line = {}
36
37 for i in range(num_instances):
38 pc = pcs.as_uint64(i)
39 source_info = action.source_info(pc)
40 if source_info != None:
41 file_name = source_info.file_name ()
42 line = source_info.line()
43 if not file_name in files_cache:
44 file_content = read_file(file_name)
45 files_cache[file_name] = file_content
46
47 value = metric.as_uint64(i)
48 if not file_name in values_per_line:
49 values_per_line[file_name] = {}
50 if not line in values_per_line[file_name]:
51 values_per_line[file_name][line] = 0
52
53 values_per_line[file_name][line] += value
54
55 return values_per_line
56
57 counter = 0
58
59 def print_metric(metric):
60 if not metric:
61 return
62
63 global counter
64 fname = ’sampling_source_%d.csv ’ % counter
65 counter += 1
66
67 with open(fname , ’w’) as outfile:
68 for file_name in files_cache:
69 num_lines = len(files_cache[file_name])
70 source = files_cache[file_name]
71
72 print("file: ", file_name , file=outfile)
73 for line in range(num_lines):
74 value_line = line + 1
75 if not value_line in metric[file_name]:
76 print ("{: >4d}: {:>16d}: {:s}". format(value_line , 0, source[line]), file=outfile)
77 else:
78 value = metric[file_name][value_line]
79 print ("{: >4d}: {:>16d}: {:s}". format(value_line , value , source[line]), file=outfile)
80
81
82 def apply(handle):
83 ctx = NvRules.get_context(handle)
84 action = ctx.range_by_idx (0). action_by_idx (0)
85
86 samples_metric = action.metric_by_name (" group:smsp__pcsamp_warp_stall_reasons "). as_string ()
87 sample_metric_names = samples_metric.split(’,’)
88
89 agg_samples = {}
90 for metric_name in sample_metric_names:
91 if metric_name:
92 metric_values = metric_per_line(action , metric_name)
93 for file_name in metric_values:
94 if not file_name in agg_samples:
95 agg_samples[file_name] = {}
96
97 for line in metric_values[file_name]:
98 value = metric_values[file_name][line]
99 if not line in agg_samples[file_name]:

100 agg_samples[file_name][line] = 0
101
102 agg_samples[file_name][line] += value
103
104 print_metric(agg_samples)

87

Listing 11: Using ncu PC sampling step B: invoking ncu.

1 $ lrun -n1 --smpiargs="- disable_gpu_hooks" ncu \

2 --section -folder ./ sections --section SourceCounters \

3 --kernel -regex -base demangled -k .* PV_Cycle_Tracking .* \

4 -s 5 -c 1 -f mercury deck.inp

Listing 12: A few lines from the new 65,742 line CSV file that we output in step B.

1 192: 0: HOST_DEVICE inline MCGIDI_VectorSizeType binarySearchVector(double a_x , Vector <double > const &

↪→ a_Xs , bool a_boundIndex = false) {

2 193: 0:

3 194: 0: MCGIDI_VectorSizeType lower = 0, middle , upper = (MCGIDI_VectorSizeType) a_Xs.size() - 1;

4 195: 0:

5 196: 22241: if(a_x < a_Xs [0]) {

6 197: 0: if(a_boundIndex) return(0);

7 198: 0: return(-2);

8 199: 0: }

9 200: 0:

10 201: 14985: if(a_x > a_Xs[upper]) {

11 202: 0: if(a_boundIndex) return(upper);

12 203: 0: return(-1);

13 204: 0: }

14 205: 0:

15 206: 0: while(1) {

16 207: 1493: middle = (lower + upper) >> 1;

17 208: 3498: if(middle == lower) break;

18 209: 57001: if(a_x < a_Xs[middle]) {

19 210: 1472: upper = middle; }

20 211: 0: else {

21 212: 0: lower = middle;

22 213: 0: }

23 214: 0: }

24 215: 0: return(lower);

25 216: 0: }

88

Listing 13: Using ncu PC sampling step C: Parse the new CSV file to find p.

1 #!/ usr/bin/env python3

2
3 import numpy as np

4 import os

5 import pandas as pd

6
7
8 def parse_ncu_profile(fname):

9
10 csv = pd.read_csv(fname , sep=’:’, usecols =[0, 1], header=None)

11 csv.columns = ’line samples ’.split()

12
13 df = pd.DataFrame(csv[csv[’line ’] == ’file ’]. samples.rename(’fnamelong ’))

14 df[’fname ’] = df.fnamelong.apply(lambda x: os.path.basename(x))

15
16 perfile = np.array_split(csv , df.index [1:])

17
18 samples_in_file = [f.samples [1:]. astype(int).sum() for f in perfile]

19 num_lines_with_samples = [(f.samples [1:]. astype(int) != 0). sum()

20 for f in perfile]

21 df[’samples ’] = samples_in_file

22 df[’num_lines_with_samples ’] = num_lines_with_samples

23
24 df[’percent ’] = 100 * (df.samples / df.samples.sum())

25
26 file_edge_index = np.array(df.index.tolist () + [csv.shape [0]])

27 flengths = (file_edge_index - np.roll(file_edge_index , 1))[1:]

28 df[’flength ’] = flengths

29
30 dummy2substr = {

31 ’mercury ’: ’build_mercury ’,

32 ’gidi ’: ’gidiplus ’,

33 ’cuda ’: ’cuda -11.2.0 -beta ’,

34 ’rng ’: ’rng ’,

35 }

36
37 index = dummy2substr.keys()

38 columns = [’files ’, ’lines ’, ’lines sampled ’, ’samples ’, ’percent ’]

39
40 dfmd = pd.DataFrame(columns=columns , index=index)

41 for dummy , substr in dummy2substr.items ():

42 df[dummy] = df.fnamelong.str.contains(substr)

43
44 files = df[dummy].sum()

45 lines = df[df[dummy]]. flength.sum()

46 lines_sampled = df[df[dummy]]. num_lines_with_samples.sum()

47 samples = df[df[dummy]]. samples.sum (). astype(int)

48 percent = df[df[dummy]]. percent.sum (). round (2)

49
50 dfmd.loc[dummy] = [files , lines , lines_sampled , samples , percent]

51
52 dfmd.index = dfmd.index.str.upper ()

53 dfmd.loc[’Total ’] = dfmd.sum()

54 dfmd.columns = dfmd.columns.str.capitalize ()

55
56 return df, dfmd

57
58
59 if __name__ == ’__main__ ’:

60 df, dfmd = parse_ncu_profile(’sampling_source_0.csv ’)

61
62 print(dfmd)

63 ingidi = dfmd.loc[’GIDI ’]. Percent

64 print(f’\ nTracking kernel spent {ingidi }% of runtime in GIDI.’)

65
66 # Uncomment to show gidi files sorted by percent of samples in file

67 # print(df[df.gidi]. sort_values(’percent ’))

68
69 # Uncomment to show all files sorted by percent of samples in file

70 # print(df.sort_values(’percent ’))

89

Listing 14: Output of Python script in Listing 13.

1 Files Lines Lines sampled Samples Percent

2 MERCURY 61 48374 1394 317526 71.71

3 GIDI 14 13076 325 110220 24.89

4 CUDA 3 4131 4 8153 1.84

5 RNG 1 366 20 6911 1.56

6 Total 79 65947 1743 442810 100

7
8 Tracking kernel spent 24.89% of runtime in GIDI.

90

