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ABSTRACT

We use a neural network to solve the discrete ordinates neutron transport equation in slab
geometry. We extend previous work which solved homogeneous medium problems by
considering problems with spatial heterogeneity. We also include a list of hyperparam-
eters which can be tuned to improve convergence, and we include a description of our
GPU implementation along with the runtime we observed using Sierra GPUs at LLNL.
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1. INTRODUCTION

There has been widespread interest in neural networks (NNs) since at least 2012 when a NN known
today as AlexNet made substantial progress in an image classification benchmark called ImageNet.
Since then, NNs: surpassed human performance at Go, matched human performance at detecting
some eye diseases and cancers, and became the leading technology for anomaly detection, rec-
ommender systems, and speech recognition. In the physical sciences, NNs have solved: Burgers’
equation, Schrödinger’s equation, Laplace’s equation, the slab geometry neutron diffusion equa-
tion [1], and the slab geometry discrete ordinates (SN ) neutron transport equation [2,3]. NNs have
also been used to accelerate components of traditional SN solvers [4].

In [2,3] NNs solved homogeneous medium problems. We extend [2,3] by considering problems
with spatial heterogeneity. We also include a list of hyperparameters which can be tuned to improve
convergence, and we include a description of our GPU implementation along with the runtime we
observed using a GPU from the Sierra supercomputer at LLNL. Heterogeneity, a hyperparameter
study, and GPU results are the new aspects of this work.

2. METHODS

We solve Equation (1), the slab geometry neutron transport equation, in a non-multiplying medium
using a single group and linearly-anisotropic scattering. We employ the loss function from [3]
reproduced here in Equation (2). See [3] for variable descriptions and derivations.
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Our implementation is available on LLNL’s Github [5].

3. RESULTS

3.1. SPATIAL HETEROGENEITY

Figure 1 presents flux plots for six problems:

Problem 1. Full Slab Homogeneous purely-absorbing medium with a uniform source and vac-
uum boundaries.

Problem 2. Half Source Homogeneous absorbing and linearly-anisotropic scattering medium with
a source on [0, 0.5] and vacuum boundaries.

Problem 3. Reed Heterogeneous absorbing and scattering medium with multiple sources and vac-
uum boundaries. Four regions. Identical to Problem 1 from [6] except with a vacuum bound-
ary at 0 instead of a reflecting boundary.

Problem 4. Sharp Slab 0 Heterogeneous strongly-absorbing medium with a source on [0, 1] ad-
jacent to a void on [1, 5] and vacuum boundaries. Two regions.

Problem 5. Sharp Slab 1 Same as above but with a weak absorber (Σa = 1) instead of a void.
The ratio of the absorption cross sections of the two regions is 50.

Problem 6. Sharp Slab 5 Same as above but with Σa = 5 and absorption cross section ratio 10.

In Figure 1, the flux calculated using the NN very closely matches MC for Problems 1-2 which
are homogeneous medium problems. This is not the case for Problems 3-6. Problems 4-6 demon-
strate that the NN has trouble with sharp gradients. The spatial gradient, which is a component
of the neutron streaming term, is the first term in Equation (1). In the NN we calculate this term
using automatic differentiation (AD) in PyTorch [7]. We were surprised by AD’s sensitivity to
sharp gradients and are working to understand it. We also want to try more traditional numerical
methods for calculating the gradient, like finite differences.

3.2. HYPERPARAMETER TUNING

In deep learning parlance, the weights and biases are the parameters of the NN. Any quantity that
is not a weight or bias is a hyperparameter. We believe that the following hyperparameters could
effect convergence and iteration runtime, where convergence is defined as the number of iterations
required to achieve the convergence criterion. We are actively varying these and will present
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Figure 1: Scalar flux plots for six different problems. The horizontal axis is the spatial co-
ordinate z and the left vertical axis is the scalar flux φ(z). The curves are labeled with the
algorithm used to find the solution, where mc is Monte Carlo and nn is neural network.
The integer in the nn label is the number of iterations required to achieve convergence. The
red curve, which corresponds to the right vertical axis, is the spatial distribution of the loss,
which has the same units as φ(z). The loss is calculated using Equation (2). Problems 1-6 are
Full Slab, Half Source, Reed, Sharp Slab 0, Sharp Slab 1, and Sharp Slab 5.

results in the full paper: number of nodes in the hidden layer, number of hidden layers, learning
rate, activation function, optimizer settings, choice of optimizer, regularization, initialization, and
scaling inputs.

Notable omissions include mini-batch size, early stopping, and dropout. These hyperparameters
may not be relevant to our NN. Consider a NN for image recognition, which might use one billion
images that are partitioned into training and test sets. Mini-batch size could affect iteration runtime.
Early stopping and dropout could improve performance on the test set by preventing overfitting.
Our data is tiny; instead of a billion images we have one input vector. Thus, our mini-batch size is
fixed at one and overfitting is not a problem because the training and test sets are identical.

3.3. GPU EXECUTION

We used the device argument to torch.tensor() along with torch.tensor.to() to
move tensors into GPU-accessible memory and torch.nn.Sequential.cuda() to move
the model parameters and buffers into GPU-accessible memory. We ran on one node of LLNL’s
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RZAnsel cluster [8], a small system with the same hardware as LLNL’s Sierra supercomputer [9].
The node has two IBM POWER9TM sockets each with 22 cores, and four NVIDIA TeslaTM V100-
SXM2-16GB VoltaTM GPUs. We ran Problem 1 to convergence at 29599 iterations and 5 minutes
and 44 seconds of walltime. The flux calculated using the V100 closely matches the flux calculated
using one P9 core, but the latter only took 2 minutes and 3 seconds to run. We were surprised that
the V100 is slower than one P9 core and we are trying to understand why.

4. CONCLUSIONS

We presented the solution to six different slab geometry neutron transport problems using NNs.
We also listed hyperparameters worth examining and we presented GPU results using a GPU from
the Sierra supercomputer at LLNL. We were surprised by the challenge that sharp spatial gradients
present to AD in PyTorch. We were also surprised to see a 2x slowdown going from one P9
core to the V100. We expect more surprises when we do the hyperparameter study. Resolving
the gradient issue and GPU performance issue and undertaking the hyperparameter study are good
directions for future work. If we add multigroup we could solve a two-material, two-group reactor
problem in slab geometry. Would we then finally have a useful transport calculation using NNs?
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