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ABSTRACT

We use a neural network to solve the discrete ordinates neutron transport equation in slab
geometry. We extend previous work which solved homogeneous medium problems by
considering problems with spatial heterogeneity. We also include a hyperparameter study
and a description of our GPU implementation along with the runtime we observed using
Sierra GPUs at LLNL.
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1. INTRODUCTION

There has been widespread interest in neural networks (NNs) since at least 2012 when a NN known
today as AlexNet made substantial progress in an image classification benchmark called ImageNet.
Since then, NNs: surpassed human performance at Go, matched human performance at detecting
some eye diseases and cancers, and became the leading technology for anomaly detection, recom-
mender systems, and speech recognition. In all of these cases, NNs performed substantially better
than any other algorithm and enabled the solution of problems that were previously unsolved.

NNs appear to be less researched for the solution of differential equations in the physical sciences.
There are NN solutions to Burgers’ equation, Schrödinger’s equation, Laplace’s equation, the slab
geometry neutron diffusion equation [1], and the slab geometry discrete ordinates (SN ) neutron
transport equation [2,3], but they only apply to specialized cases for which other solvers are easily
used. So why consider NNs? A rapidly growing ecosystem of NN software and hardware exists
which could be used to improve time to solution for transport problems. One example is the GPUs
in LLNL’s Sierra supercomputer [4], which are designed for fast, power-efficient execution of
operations found in graphics rendering and neural network training.

At LLNL we typically use Monte Carlo (MC) or SN for transport, not NNs. The goal is not to
replace MC or SN . Both will remain production capabilities for the foreseeable future at LLNL.
Instead, we seek a foundation on which hybrid methods employing NNs in combination with MC
or SN may be considered in the future. The profitability of a hybrid method employing NNs
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was recently demonstrated by one example in which a NN was used to accelerate a SN solver by
replacing a Gaussian Elimination step [5].

NNs were used to solve homogeneous medium neutron transport problems in [2,3]. We extend
[2,3] by considering problems with spatial heterogeneity. We also include a hyperparameter study
and a description of our GPU implementation along with the runtime we observed using a Sierra
GPU at LLNL. Heterogeneity, a hyperparameter study, and GPU results are the new aspects of this
work.

2. METHODS

We solve Eq. (1a), the slab geometry neutron transport equation, in a non-multiplying medium
using a single energy group and linearly-anisotropic scattering with vacuum boundaries:

µ
∂ψ(z, µ)

∂z
+ Σt(z)ψ(z, µ) =

1

2

[
Σs0(z)φ0(z) + 3Σs1(z)φ1(z)µ+Q(z)

]
(1a)

ψ(z = 0, µ > 0) = 0 (1b)
ψ(z = zmax, µ < 0) = 0. (1c)

We updated the cross sections in the loss function from [3] to accommodate heterogeneity by
adding spatial dependence, [Σt,Σs0,Σs1] ≡ [Σt(z),Σs0(z),Σs1(z)], to get this loss function:

L =

∥∥∥∥∇Ψ̂diag(µ) + ΣtΨ̂−
1

2

(
Σs0Φ̂01

T
N − 3Σs1Φ̂1µ

T −Q
)∥∥∥∥2

F

+ γL‖Ψ̂µ>0(z = 0)−ΨL‖2F (2)

+ γR‖Ψ̂µ<0(z = zmax)−ΨR‖2F ,

where Ψ̂(z,µ) ≡ Ψ̂ ∈ Rd×N is a discretized approximation of the angular flux which has been
sampled at d spatial points z ∈ Rd and N quadrature points µ ∈ RN , diag(µ) ∈ RN×N is a
matrix with the ordered values of the ordinate angles µi on the diagonals, 1TN is a row vector of N
ones, and F denotes the Frobenius norm. The NN is used to estimate Ψ̂, allowing us to compute
the scalar flux Φ̂0 and current Φ̂1 as

Φ̂0 = Ψ̂w (3)

Φ̂1 = Ψ̂diag(µ)w, (4)

where w ∈ R
N are the Gauss-Legendre quadrature weights. The loss function is simply the

residual of the SN equations plus terms that aim to improve the accuracy at the boundaries. We
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use the Adam optimizer [6] in PyTorch [7] to minimize the loss function. Loss minimization is
an iterative process which ends when we achieve our convergence criterion:

∣∣L(l+1) − L(l)
∣∣ < ε, (5)

where L(l) and L(l+1) are the losses computed at iteration l and l + 1, respectively, and ε is some
small constant, in our case 10−13.

We use the network architecture from [3], shown in Fig. 1. The boxes are operations: Linear is
a matrix vector multiplication plus entry-by-entry addition that uses NumPy broadcasting seman-
tics to handle addition operands with different dimensions [8], and Tanh is a nonlinear activation
function. z is the input vector of points along the spatial axis, w is a weight matrix and b is a bias
vector. The number of parameters p is equal to the number of weights and biases, so this network
has 5 + 5 + 20 + 4 = 34 parameters. Let N ≡ number of ordinates and h ≡ number of hidden
layer nodes, then p(h,N) = (h + h) + (hN + N) where the two terms come from the Linear(1,
h) and Linear(h, N ) operations. In our default architecture, h = 5 and N = 4, which results in
p(5, 4) = 34 parameters.

z
50×1

× w
1×5

+ b
1×5

Linear(1, 5) Tanh

z′′
50×5

× w′
5×4

+ b′
1×4

Linear(5, 4)
input z

50×1
z′

50×5
z′′

50×5
z′′′
50×4

output

Figure 1: Default NN architecture.

The procedure for solving Eq. (1a) using the NN is summarized as follows:

1. Construct the NN and define the loss function to minimize.

2. Pass input data z through the network to yield the angular flux Ψ̂, the scalar flux Φ̂0, and the
current Φ̂1.

3. Calculate the loss using Eq. (2).

4. Perform backpropagation by computing the gradient of the loss with respect to the input z
(i.e., compute ∇zL) and use this to determine the gradient with respect to each parameter in
the network.

5. Use the gradients computed above to update each parameter in the network such that the
parameters are updated in the direction that decreases the loss the most.

6. Repeat the forward and backwards passes until the convergence criterion in Eq. (5) is achieved.

Our implementation is available on LLNL’s Github [9].
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3. RESULTS

3.1. SPATIAL HETEROGENEITY

This section contains numerical results from using the default NN architecture to solve six transport
problems. Longer problem descriptions and problem parameters are included in APPENDIX A.

Problem 1. Full Slab Homogeneous purely-absorbing medium with a uniform source and vac-
uum boundaries.

Problem 2. Half Source Homogeneous absorbing and linearly-anisotropic scattering medium with
a source on [0, 0.5] and vacuum boundaries.

Problem 3. Reed Heterogeneous absorbing and scattering medium with multiple sources and vac-
uum boundaries. Four materials. Identical to Problem 1 from [10] except with a vacuum
boundary at 0 instead of a reflecting boundary.

Problem 4. Sharp Slab 0 Heterogeneous strongly-absorbing medium with a source on [0, 1] ad-
jacent to a void on [1, 5] and vacuum boundaries. Two materials.

Problem 5. Sharp Slab 1 Same as Problem 4 but with a weak absorber (Σa = 1) instead of a
void. The ratio of the absorption cross sections of the two materials is 50.

Problem 6. Sharp Slab 5 Same as Problem 4 but with Σa = 5 and absorption cross section ratio
10.

Fig. 2 shows our solutions. The horizontal axis is the spatial coordinate z and the left vertical axis
is the scalar flux φ(z). The curves are labeled with the algorithm used to find the solution, where
mc is Monte Carlo and nn is neural network. The integer in the nn label is the number of iterations
required to achieve convergence. The red curve, which corresponds to the right vertical axis, is
the spatial distribution of the loss, which has the same units as φ(z). The loss is calculated using
Eq. (2).

In Fig. 2, the flux calculated using the NN very closely matches MC for Problems 1-2 which are
homogeneous medium problems. This is not the case for Problems 3-6. Problems 4-6 demon-
strate that the NN is not accurate for problems that include sharp gradients. The spatial gradient,
which is a component of the neutron streaming term, is the first term in Eq. (1a). In the NN, we
calculate this term using automatic differentiation (AD) in PyTorch. We were surprised by AD’s
sensitivity to sharp gradients and are working to understand it. We also want to try more traditional
numerical methods for calculating the gradient, like finite differences.

3.2. HYPERPARAMETER STUDY

This section contains numerical results from 25,469 solutions of Problem 1, where we changed
some quality of the NN for each solution attempt.

In deep learning parlance, the weights and biases are the parameters of the NN, and any quantity
that is not a weight or bias is a hyperparameter. Hyperparameters can affect convergence and
iteration runtime, where convergence is defined as the number of iterations required to achieve the
convergence criterion in Eq. (5). Table 1 lists the hyperparameters that we varied in this study, the
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(f) Problem 6. Sharp Slab 5

Figure 2: Scalar flux plots for six transport problems.

hyperparameters that we want to vary in a future study, and 3 hyperparameters which may not be
applicable to our approach.

Table 1: Classification of hyperparameters.

Considered in this study For future studies Not applicable

RNG seed Input vector size Mini-batch size
Number of hidden layer nodes h Number of hidden layers Early stopping
Learning rate α Optimizer-specific (eg β1, β2) Dropout
Choice of optimizer Regularization
Choice of activation function Initialization

Scaling inputs

We sampled the hyperparameters with infinite domains from uniform distributions. The RNG seed
samples were bU(0, 2<<31)c, the number of hidden layer nodes h samples were b10U(0,4)c, and the
learning rate α samples were 10U(−5,−1). The learning rate, also known as the step size, is a factor
which determines the magnitude of the parameter adjustments made by an optimizer. Authors of
optimizers publish recommended learning rates. For example, the Adam authors recommend 10−3.
Hyperparameters with finite domains were cycled through sequentially. For example, we sampled
9 optimizers ≈

⌊
n
9

⌋
=

⌊
925
9

⌋
= 102 times each, using a different RNG seed each time. Fig. 3

shows the effects of varying hyperparameters.
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(d) Same data as plot (c).
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Figure 3: Hyperparameter study results for Problem 1.
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Row 1 of Fig. 3 shows that the loss at convergence L(M) is sensitive to the RNG seed and the
number of hidden layer nodes h. The RNG seed determines L(0) because the NN parameters are
initialized by sampling random variates from a uniform distribution, in our case U(−1, 1). Fig. 3a
shows that picking a different RNG seed can reduce L(M) by three orders of magnitude. Fig. 3b
shows that L(M) < 10−2 requires h ∈ [3, 13].

Row 2 of Fig. 3 shows L(M) is sensitive to the learning rate. The maximum number of iterations
that we allowed was 100,000, which is why Fig. 3c shows clumping at M = Mmax ≡ 100,000.
Fig. 3c also shows that convergence may not be achievable before Mmax for α < 10−4 and that
α > 10−2 can hit Mmax, but α ∈ (10−4, 10−2) appears to always converge. Fig. 3d shows that
the optimal α may be ≈ 0.0002 or > 10−2 but this result is sensitive to the RNG seed. While not
shown, we found that α ≈ 10−3 is never worse than other α, and often optimal.

Row 3 of Fig. 3 shows L(M) is sensitive to the choice of optimizer and the choice of activation
function. Fig. 3e shows that Adam and its variants Adamax and AdamW can all achieve approxi-
mately the same minimum L(M), but Adamax is more often closer to the minimum. Fig. 3f shows
that Tanh and Sigmoid more often achieve a smaller L(M) than other activation functions. Softplus
and LogSigmoid achieved the smallest minimum L(M), but the distance of their minimums from
their medians may mean that Softplus and LogSigmoid only rarely provide such a great result.

It would be interesting to vary the NN architecture by simultaneously changing the input vector
size, the number of nodes in the hidden layer, and the number of hidden layers to see how they
affect convergence and iteration runtime. We think convergence could improve with a bigger NN,
at the cost of increased iteration runtime. Another question is whether hyperparameter studies for
other problems would lead to similar conclusions.

3.3. GPU EXECUTION

We used the device argument to torch.tensor() along with torch.tensor.to() to
move tensors into GPU-accessible memory and torch.nn.Sequential.cuda() to move
the model parameters and buffers into GPU-accessible memory. We ran on one node of LLNL’s
RZAnsel cluster [11], a small system with the same hardware as LLNL’s Sierra supercomputer.
The node has two IBM POWER9TM sockets each with 22 cores, and four NVIDIA TeslaTM V100-
SXM2-16GB VoltaTM GPUs. We ran Problem 1 to convergence at 29599 iterations and 5 minutes
and 44 seconds of walltime. The V100 flux closely matches the P9 flux, but the latter only took 2
minutes and 3 seconds to run, a slowdown of nearly 3x.

The work of a NN is serial with respect to the optimization iterations, so the available concurrency
is limited by the number of parameters and the number of training data points. AlexNet had 60
million parameters and 1.2 million input images. The default architecture of our network has 34
parameters and only 1 input (see Fig. 1). The absence of significant parallel work was confirmed
by nvidia-smi, which showed only 11% GPU utilization, and nvprofwhich showed that only
29.67 seconds were spent in GPU kernels whereas 153.11 seconds were spent in CUDA runtime
API calls. The former is useful work and the latter is pure overhead. Table 2 and Table 3 show
kernel and call times.
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Table 2: Five most expensive GPU kernels per nvprof.

Time(%) Time Calls Avg Min Max Name

11.80 3.50177s 887996 3.9430us 3.8080us 5.1520us ZN2at6native6moder...
11.75 3.48571s 503200 6.9270us 4.9270us 10.272us ZN2at6native13redu...
8.42 2.49947s 680804 3.6710us 3.5830us 4.8640us ZN2at6native6moder...
7.24 2.14960s 266400 8.0690us 7.9360us 345.34us volta sgemm 32x32 s...
6.55 1.94456s 503200 3.8640us 3.7440us 5.0880us ZN2at6native6moder...

Table 3: Five most expensive CUDA runtime API calls per nvprof.

Time(%) Time Calls Avg Min Max Name

54.06 82.7777s 6127206 13.509us 10.640us 7.3316ms cudaLaunchKernel
21.69 33.2049s 40848436 812ns 593ns 6.1128ms cudaGetDevice
11.25 17.2308s 17997061 957ns 664ns 668.65us cudaSetDevice

6.85 10.4897s 562472 18.649us 10.318us 49.983ms cudaMemcpyAsync
1.90 2.91627s 7 416.61ms 10.307us 2.91571s cudaMalloc

4. CONCLUSIONS

We presented the solution to six different slab geometry neutron transport problems using NNs.
We also varied some hyperparameters and presented GPU results using a GPU from the Sierra
supercomputer at LLNL. We were surprised by the challenge that sharp spatial gradients present
to AD in PyTorch. We were also surprised by the sensitivity of L(M) to L(0). We understand that
the 2x slowdown going from one P9 core to the V100 is due to a lack of parallel work. Resolving
the gradient issue and GPU performance issue and expanding the hyperparameter study could be
good directions for future work. If we add multigroup we could solve a two-material, two-group
reactor problem in slab geometry.
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APPENDIX A. Problem Parameters

The following descriptions are to help the reader understand the problem setups for the flux cal-
culations presented in Section 3.1. The problem inputs are available on LLNL’s Github [9]. In
particular, the file test mc21.py runs the problems and generates the plots in Fig. 2.

Problem 1. Full Slab is a homogeneous and purely-absorbing slab with a source in the full domain
and with vacuum boundaries. See Table 5 for parameters.

Problem 2. Half Source is a homogeneous slab with absorption and linearly-anisotropic scattering
and a source on the left half of the domain and with vacuum boundaries. See Table 6 for parameters.

Problem 3. Reed is a four-material slab with a source in the first material and another source in
the first centimeter of the fourth material and with vacuum boundaries. We used 200 zones, 50 in
each material. The zones within a material are equal size, but the material extents differ so the size
of the zones in one material is not the same as the size of the zones in another material. See Table 7
for parameters.

Problem 4, 5, 6. Sharp Slab 0, 1, 5 are two-material, purely-absorbing slabs with a source in
the first material and vacuum boundaries. The first material is a strong absorber. The second
material is a void (Σt = 0), a weak absorber (Σt = 1), or a moderate absorber (Σt = 5) for the
problems named Sharp Slab 0, 1, 5 respectively. The ratio of the absorption cross sections of the
two materials is∞, 50, 10 respectively. See Table 8 for parameters.
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Table 4: Description of problem parameters.

Parameter Description

Σt Total cross section (cm−1)
Σs0 Total scattering cross section (cm−1)
Σs1 Linearly anisotropic cross section (cm−1)
Q External source magnitude
J Number of zones
N Number of ordinates
P Number of MC particles
h Number of hidden layer nodes in NN

Table 5: Parameters used in Problem 1. Full Slab

Σt Σs0 Σs1 Q J N P h

0 < z < 1 8 0 0 8 50 4 1e6 5

Table 6: Parameters used in Problem 2. Half Source

Σt Σs0 Σs1 Q J N P h

0 < z < 1 8 6.4 1.6 50 4 1e6 5
0 < z < 0.5 8
0.5 < z < 1 0

Table 7: Parameters used in Problem 3. Reed

Σt Σs0 Σs1 Q J N P h

0 < z < 8 0 4 1e6 6
0 < z < 2 50 0 50 50
2 < z < 3 5 0 0 50
3 < z < 5 0 0 0 50
5 < z < 6 1
5 < z < 8 1 0.9 0 50

Table 8: Parameters used in Problem 4, 5, 6. Sharp Slab 0, 1, 5

Σt Σs0 Σs1 Q J N P h

0 < z < 5 0 0 4 1e6 5
0 < z < 1 50 50 50

Sharp Slab 0 1 < z < 5 0 0 50
Sharp Slab 1 1 < z < 5 1 0 50
Sharp Slab 5 1 < z < 5 5 0 50


