‘ ! ! . LLNL-PROC-800725

LAWRENCE
LIVERMORE
NATIONAL

wouron | Transitioning the Scientific
Software Toolchain to
Clang/LLVM

M. M. Pozulp, S. A. Dawson, R. C. Bleile, P. S.
Brantley, M. S. McKinley, M. J. O'Brien, D. F.
Richards

January 8, 2020

European LLVM Developers' Meeting
Paris, France
April 6, 2020 through April 7, 2020




Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.



Transitioning the Scientific Software Toolchain to
Clang/LLVM

M. Pozulpl’z, S. Dawson!, R. Bleile!:3, P. Brantleyl, M. S. McKinleyl, M. O’Brien', and D. Richards!

"Lawrence Livermore National Laboratory, Livermore, CA USA
{pozulpl, dawson6, bleilel, brantleyl, mckinley9, obrien20, richards12} @1lnl.gov
2University of California, Davis, CA USA
3University of Oregon, Eugene, OR USA

Abstract—For the past 25 years, many of the largest scientific
software applications at Lawrence Livermore National Labora-
tory (LLNL) have used the Intel C/C++ compiler (icc/icpc) to
compile the executables provided to users on x86. This spring
2020, the Monte Carlo Transport Project will release our first
executable compiled with clang, which builds 25% faster and
runs 6.1% faster than icpc. The poster accompanying this paper
will describe the challenges of switching toolchains and the
resulting advantages of using a clang/LLVM toolchain for large
scientific software applications at LLNL.

1. BACKGROUND

In 1995 at Lawrence Livermore National Laboratory
(LLNL), we observed that the Intel C compiler (icc) generated
the best code on x86 and so we used it to compile the
executables that we provided to users running on x86. Today
our applications look very different than they did in 1995.
At least 12 of our 15 largest applications [1] are written in
a mix of C, C++98, and C++11, so we use the Intel C++
compiler (icpc) instead of icc. Together these 12 applications
consist of about 5 million lines of code. This poster will focus
on Mercury, a 3D massively parallel Monte Carlo particle
transport application containing approximately 300,000 lines
of code [2].

II. MOTIVATION

Our motivation to investigate clang was based off an anal-
ysis of the relative advantages of icpc (TABLE I) and clang
(TABLE 1) for our applications. We are not dropping support
for icpc. We will continue to build with icpc for testing and
we will support users who want to build Mercury with icpc.

TABLE 1
ADVANTAGES OF STAYING WITH ICPC

e no work required to continue using the same compiler
o compatibility with Intel developer tools
o compatibility with Intel libraries

III. PERFORMANCE

We provide users with two Mercury executables on x86,
a MPI-only executable and a MPI+OpenMP executable. The

TABLE I
ADVANTAGES OF SWITCHING TO CLANG

generates faster code

faster compilation

better C++ standard support

can target non-x86 platforms like ARM, Power, and GPUs
better documentation [3] [4]

compatibility with open source developer tools
compatibility with open source libraries

open source

— no vendor lock-in
— we can fix bugs ourselves
— we can understand what the compiler is doing
— external collaborators can build our code and reproduce our results
— no denial-of-service due to license server outage
— no license fee
e big community
— active mailing lists (Ilvm-dev, cfe-dev, etc.)
— annual developer meetings in San Jose and Europe
— more users often means fewer bugs and more features
¢ innovative toolchain technologies like ThinLTO [5] and sanitizers [6]
o Dbetter support for popular gcc language extensions [7]
o our vendor partners’ compilers are increasingly clang-based (e.g. Cray)

performance analysis in this paper is limited to the former. For
a discussion of the latter, please see Section IV.

We used LLNL’s RZGenie cluster [8] which contains 48
dual-socket nodes with Intel Xeon E5-2695 v4 “Broadwell”
CPUs [9]. The nodes are connected by an Intel Omni-Path
interconnect and they run RHEL-based TOSS3 Linux.

TABLE III shows the times to compile the Mercury ex-
ecutable. TABLE IV shows the compile and link flags. A
serial compile is 15% faster with clang, but clang takes almost
twice as long to link. The real build, a hybrid distributed-
and shared-memory parallel build that our developers use to
build an executable (i.e. compile and link using 4 nodes),
is 25% faster with clang. We are using ThinLTO [5] to do
whole-program optimization at link time with 11d [10]. Without
ThinLTO, clang links in 4.3s, a 35% speedup over icpc.

TABLE III
COMPILE TIME COMPARISON
icpc 19.0.4 | clang 9.0.0 | icpc/clang
serial compile | 17m37s 15m16s 1.15
link time 5.8s 11.3s 0.51
real build 1m21s 1m5s 1.25




TABLE IV
COMPILE AND LINK FLAGS

icpc 19.0.4

-g -02 -std=c++11 -no-ftz
-fp-model precise

-fp-model source -nolib-inline
-prec-div -prec-sqrt
-unroll-aggressive
-funroll-loops -diag-disable
cpu-dispatch -finline-functions

clang 9.0.0

-g -02 -std=c++11
-ffp-contract=off

CXXFLAGS -gxx-name=/path/to/gcc-7.1.0 -flito=thin

-wd10397 -wd2650 -fstandalone-debug

-qoverride-limits

-fno-builtin-malloc

-fno-builtin-calloc

-fno-builtin-realloc

-fno-builtin-free -ip -no-ipo

-flto=thin

LDFLAGS - fuse-1d=1ld

Parallelism of Tests

41

Parallelism description

0 20 40 60 80 100 120 140
Number of tests

Fig. 1. This plot shows the parallelism distribution of the 391 tests. 41 of
the tests were serial, meaning they ran on 1 node using 1 task (1_1) while
the remaining 350 tests were parallel. The vertical axis label X_Y means a
total of Y tasks ran across X nodes.

For the runtime comparison we ran a suite of 391 tests. The
runtime of a test is the time spent tracking particles (for a brief
description of the Monte Carlo particle transport algorithm
in Mercury see Appendix A). Fig. 1 shows the parallelism
distribution of the 391 tests.

Fig. 2 shows the runtime distribution of the 391 tests. The
391 tests varied from a minimum of 3 milliseconds to a
maximum of 16 minutes.

We ran the suite five times using the same executable in
order to quantify the run-to-run variability. The sum of the
runtimes for the 391 tests for the median run of the 5 runs with
the icpc-compiled executable was 14224 seconds or 3 hours,
57 minutes, and 4 seconds. This is the runtime to which all
other runs of the test suite are compared.

Fig. 3 compares the runtime of our test suite for icpc and
clang, as well as clang with and without ThinLTO. We found
that without ThinLTO, clang was 1% slower than icpc, but
with ThinLTO clang was 6.1% faster than icpc. We did not see
a significant difference when we used ThinL.TO for Mercury
versus ThinLTO for everything (i.e. Mercury and all libraries).

Runtime of Tests

103 4 . '}
mean is 36.13 seconds *
102 min, pl, med, p3, max
0.00, 0.68, 8.00, 31.10, 980.27
)
S 1014
g
o
£ 1004
c
3
g 107! 4 //
1072 4 é
r
0 50 100 150 200 250 300 350 400

Test index (0 to 390)

Fig. 2. This plot shows the runtime distribution of the 391 tests. The shortest
tests ran for 3 milliseconds and the longest test ran for 16 minutes 20 seconds.
pl is the 25th percentile and p3 is the 75th percentile. The total was 14125
seconds or 3 hours, 55 minutes, and 25 seconds.

Runtime of Test Suite

71 ‘ .
: 6.4% ¢
6- 6.1% * ahe
5 . ‘
= 4.7% o
E 4]
o
S
2 5]
(%
3
Q 27
=3
? 1-
é’_ ]
B e S e L e P L L L
. s
1 o -1.0%
.
24 .
31— T : : :
icpc clang mcapm mercury everything
Compiler description
Fig. 3. This plot shows the percent speedup of 5 test suite runs for

5 executables compared to the median run with icpc (through which the
horizontal line is drawn). The medians of the 5 run sets are labeled and
highlighted in red. icpc is the executable compiled with icpc 19.0.4. clang
is the executable compiled with clang 9.0.0. mcapm is the clang-compiled
executable with ThinLTO used for Mercury and MCAPM [11]. mercury is the
clang-compiled executable with ThinLTO used for Mercury. everything is the
clang-compiled executable with ThinLTO used for everything (i.e. Mercury
and all libraries).

However, we did see a slowdown when we used it for Mercury
and MCAPM [11], which we are still trying to understand. For
a list of libraries used in Mercury see TABLE V.

IV. DISCUSSION

The 25% build time speedup and 6.1% runtime speedup
are great, and we may be able to improve on 6.1% if we
can understand and tweak the ThinLTO settings. For example,
llvm/lib/Transforms/IPO/FunctionImport.cpp
has a value import-instr-1imit with default value 100
and description “Only import functions with less than N



TABLE V
LIBRARIES LINKED INTO MERCURY

LLNL Libraries:

Name Version

timers 2.1.27

ft_hash 2.1.27 Third-Party Libraries:
overlink 4.7.1

mcapm 2.7.12 Name Version
mpism 1.1.19 mvapich2 | 2.3.1
tdf 2.3.58 python 2.7.14
silo 4.10.3 tcmalloc 2.6.1
sha 1.0 hdfs 1.8.10pl
memusage 2.1.27 zlib 1.2.9
physicsutils | 0.0.190904 szip 2.1
gidiplus 3.17.115

nuclear r184

mg 3.0

yogrt -

instructions.” If we increase this parameter will we get more
cross-translation-unit inlining and an even better runtime? We
also still need to try PGO.

Every night we run all our tests with Address Sanitizer, but
with Leak Sanitizer turned off. We want to use Thread Sani-
tizer and Archer [12] to fix problems with our MPI+OpenMP
executable which appear when compiling with clang at —02
but not icpc.

Finally, we want to use clang on Sierra, a hybrid POWER9
CPU and NVIDIA Volta V100 GPU machine sited at LLNL
[13] and currently the number two supercomputer on the
TOPS500 [14]. We already use clang to target POWERDY, but
we use nvce to compile our CUDA code for the V100. We
would prefer to use clang for all the reasons described in [15].

V. ACKNOWLEDGEMENTS

The title for this document was inspired by a presentation
at the 2019 LLVM Developers’ Meeting, “Transitioning the
Networking Software Toolchain to Clang/LLVM” [16].

This work performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. LLNL-PROC-800725.

APPENDIX A
MONTE CARLO PARTICLE TRANSPORT

Monte Carlo particle transport has a single high-level while
loop which performs most of the useful work (see Algorithm
1). Calculations spend 90% of the runtime in this loop. Calcu-
lations spend 50% of the runtime in the “cycleTracking” phase
of the loop which contains about 100,000 lines of reachable
code (see Algorithm 2). For this analysis, we compare time
in “cycleTracking” instead of total runtime. That means we
ignore input parsing, allocation, I/O, and most other syscalls.

REFERENCES

[1] Linl computer codes.
Accessed: 2019-12-29.

[2] Mercury. https://wci.llnl.gov/simulation/computer-codes/mercury. Ac-
cessed: 2019-12-29.

[3] Clang: a c language family frontend for llvm. https://clang.llvm.org.
Accessed: 2019-12-29.

https://wci.llnl.gov/simulation/computer-codes.

Algorithm 1 Monte Carlo particle transport

Read in nuclear data

while cycles remain do
cyclelnit
cycleTracking
cycleFinalize

end while

Algorithm 2 Particle tracking (“cycleTracking”)

Compute distance to cell boundary, dcei_poundary
Sample distance to collision, dciiision

Compute distance to census, deensus

Complne min (dcell_boundarys dcollision’ dcensus)

case cell_boundary: move particle across cell boundary
case collision: move particle to collision site, sample rxn
case census: move particle to census site, save particle

[4] The llvm compiler infrastructure. https://llvm.org. Accessed: 2019-12-
29.

[5] Thinlto: Scalable and incremental lto. http://blog.llvm.org/2016/06/
thinlto-scalable-and-incremental-1to.html. Accessed: 2019-12-29.

[6] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker. In
USENIX Annual Technical Conference (USENIX ATC 12), pages 309—
318, Boston, MA, 2012. USENIX.

[7] Clang language  extensions. https://clang.llvm.org/docs/
LanguageExtensions.html. Accessed: 2019-12-29.

[8] Rzgenie. https://hpc.linl.gov/hardware/platforms/RZGenie. Accessed:
2019-12-29.
[9] Intel® xeon®) processor e5-2695 v4. https:

//ark.intel.com/content/www/us/en/ark/products/91316/
intel-xeon-processor-e5-2695-v4-45m-cache-2-10-ghz.html. Accessed:
2019-12-29.

[10] LId - the llvm linker. http://lld.Ilvm.org/. Accessed: 2019-12-29.

[11] Jim A. Rathkopf. Mcapm: All particle method generator and collision
package. Technical Report UCRL-ID-112310, Lawrence Livermore
National Laboratory, Livermore, California, 1992.

[12] S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Miiller. Archer: Effectively
spotting data races in large openmp applications. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 53-62, May 2016.

[13] Sudharshan S. Vazhkudai, Bronis R. de Supinski, Arthur S. Bland,
Al Geist, James Sexton, Jim Kahle, Christopher J. Zimmer, Scott
Atchley, Sarp Oral, Don E. Maxwell, Veronica G. Vergara Larrea,
Adam Bertsch, Robin Goldstone, Wayne Joubert, Chris Chambreau,
David Appelhans, Robert Blackmore, Ben Casses, George Chochia,
Gene Davison, Matthew A. Ezell, Tom Gooding, Elsa Gonsiorowski,
Leopold Grinberg, Bill Hanson, Bill Hartner, Ian Karlin, Matthew L.
Leininger, Dustin Leverman, Chris Marroquin, Adam Moody, Martin
Ohmacht, Ramesh Pankajakshan, Fernando Pizzano, James H. Rogers,
Bryan Rosenburg, Drew Schmidt, Mallikarjun Shankar, Feiyi Wang,
Py Watson, Bob Walkup, Lance D. Weems, and Junqi Yin. The
design, deployment, and evaluation of the coral pre-exascale systems.
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, pages 52:1-52:12, 2018.

[14] Top500 november 2019. https://www.top500.org/lists/2019/11/.  Ac-
cessed: 2019-12-29.

[15] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris
Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng,
and Robert Hundt. Gpucc: An open-source gpgpu compiler. In
Proceedings of the 2016 International Symposium on Code Generation
and Optimization, CGO ’16, page 105-116, New York, NY, USA, 2016.
Association for Computing Machinery.

[16] Transitioning the networking software toolchain to clang/llvm. https:
/Iwww.youtube.com/watch?v=0rICCQb_mRg&feature=youtu.be. ~ Ac-
cessed: 2019-12-29.



