1D Transport Using Neural Nets, SN, and MC

M&C 2019 Portland, Oregon August 25-29, 2019

August 27, 2019

Mike Pozulp

LLNL-PRES-787894

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

This talk has three parts

- 1) Motivation
- 2) Methods
- 3) Results
 - The transport equation can be solved using a neural network (NN). The runtime is competitive with SN and MC for a simple test problem.

Porting code is hard when everything changes

Algorithm		
Language		
Library		
Compiler		
Runtime		
ISA		
Hardware		

Porting code is hard when everything changes

	Trinity Phase 1
Algorithm	MC
Language	C++
Library	MPI
Compiler	Intel
Runtime	OpenMP
ISA	X86/AVX2
Hardware	Haswell

Porting code is hard when everything changes

	Trinity Phase 1	Trinity Phase 2	
Algorithm	MC	MC	
Language	C++	C++	
Library	MPI	MPI	
Compiler	Intel	Intel	
Runtime	OpenMP	OpenMP	
ISA	X86/AVX2	X86/AVX512	
Hardware	Haswell	KNL	

Porting code is hard when everything changes

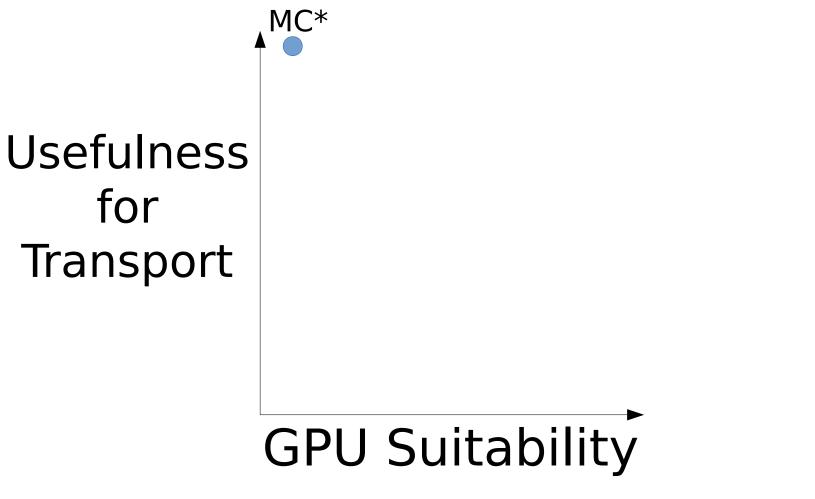
	Trinity Phase 1	Trinity Phase 2	Sierra
Algorithm	MC	MC	MC
Language	C++	C++	CUDA
Library	MPI	MPI	Torch
Compiler	Intel	Intel	NVCC
Runtime	OpenMP	OpenMP	CUDA-RT
ISA	X86/AVX2	X86/AVX512	ΡΤΧ
Hardware	Haswell	KNL	Volta

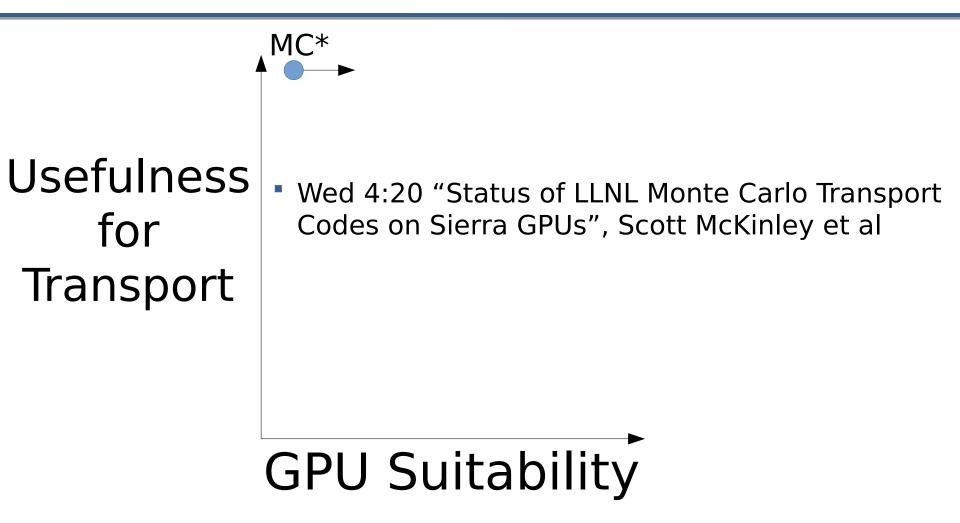
Porting code is hard when everything changes

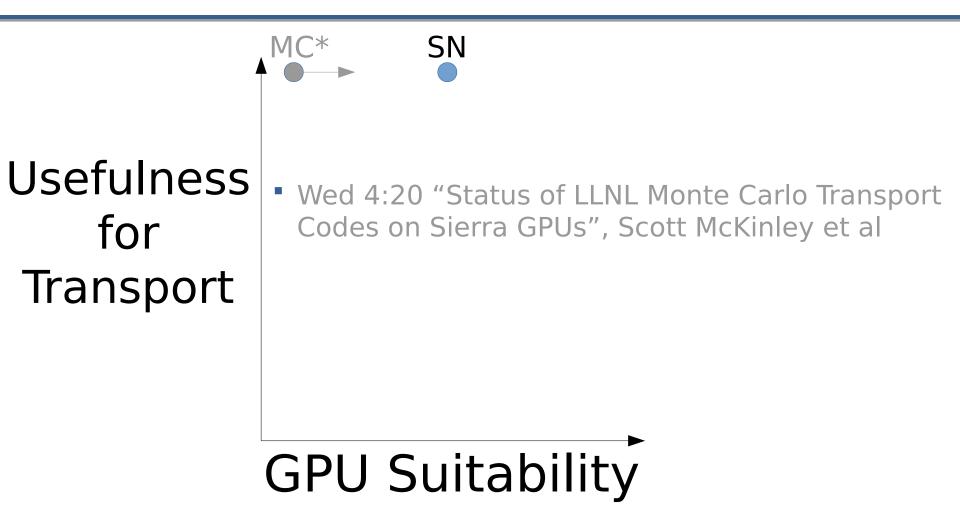
	Trinity Phase 1	Trinity Phase 2	Sierra
Algorithm	MC	MC	MC NN
Language	C++	C++	CUDA
Library	MPI	MPI	Torch
Compiler	Intel	Intel	NVCC
Runtime	OpenMP	OpenMP	CUDA-RT
ISA	X86/AVX2	X86/AVX512	PTX
Hardware	Haswell	KNL	Volta

Usefulness for Transport

GPU Suitability







- Wed 1:20 "Porting 3D Discrete Ordinates Sweep Algorithm in Ardra to CUDA", Adam Kunen et al
- Wed 4:20 "Status of LLNL Monte Carlo Transport Codes on Sierra GPUs", Scott McKinley et al
- Thur 11:30 "Porting TETON, a Discrete-Ordinates Thermal Radiative Transfer Code, to SIERRA", Terry Haut et al

GPU Suitability

Usefulness

for

Transport

SN

- Wed 1:20 "Porting 3D Discrete Ordinates Sweep Algorithm in Ardra to CUDA", Adam Kunen et al
- Wed 4:20 "Status of LLNL Monte Carlo Transport Codes on Sierra GPUs", Scott McKinley et al
- Thur 11:30 "Porting TETON, a Discrete-Ordinates Thermal Radiative Transfer Code, to SIERRA", Terry Haut et al

GPU Suitability

SN

- Wed 1:20 "Porting 3D Discrete Ordinates Sweep Algorithm in Ardra to CUDA", Adam Kunen et al
- Wed 4:20 "Status of LLNL Monte Carlo Transport Codes on Sierra GPUs", Scott McKinley et al
- Thur 11:30 "Porting TETON, a Discrete-Ordinates Thermal Radiative Transfer Code, to SIERRA", Terry Haut et al

NN

This talk, right now

GPU Suitability

*History-based Monte Carlo

Slab geometry neutron transport

$$\mu \frac{\partial \psi(z,\mu)}{\partial z} + \Sigma_t(z)\psi(z,\mu) = 2\pi \int_{-1}^1 d\mu' \Sigma_s(z,\mu_0)\psi(z,\mu') + \frac{1}{2} \bigg[\nu \Sigma_f(z)\phi(z) + Q_{ext}(z)\bigg]$$

Slab geometry neutron transport

$$\mu \frac{\partial \psi(z,\mu)}{\partial z} + \Sigma_t(z)\psi(z,\mu) = 2\pi \int_{-1}^1 d\mu' \Sigma_s(z,\mu_0)\psi(z,\mu') + \frac{1}{2} \bigg[\nu \Sigma_f(z)\phi(z) + Q_{ext}(z)\bigg]$$

Discrete ordinates

$$\frac{\mu_m}{l_j} \left(\psi_{m,j+\frac{1}{2}}^{(l+1)} - \psi_{m,j-\frac{1}{2}}^{(l+1)} \right) + \Sigma_{t,j} \psi_{m,j}^{(l+1)} = \frac{1}{2} \hat{Q}_{m,j}^{(l)}$$

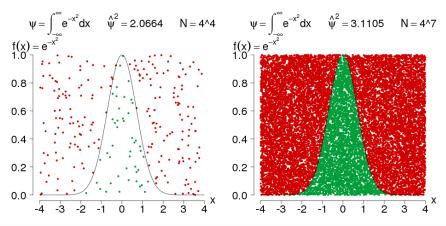
Slab geometry neutron transport

$$\mu \frac{\partial \psi(z,\mu)}{\partial z} + \Sigma_t(z)\psi(z,\mu) = 2\pi \int_{-1}^1 d\mu' \Sigma_s(z,\mu_0)\psi(z,\mu') + \frac{1}{2} \bigg[\nu \Sigma_f(z)\phi(z) + Q_{ext}(z)\bigg]$$

Discrete ordinates

$$\frac{\mu_m}{l_j} \left(\psi_{m,j+\frac{1}{2}}^{(l+1)} - \psi_{m,j-\frac{1}{2}}^{(l+1)} \right) + \Sigma_{t,j} \psi_{m,j}^{(l+1)} = \frac{1}{2} \hat{Q}_{m,j}^{(l)}$$

Monte Carlo



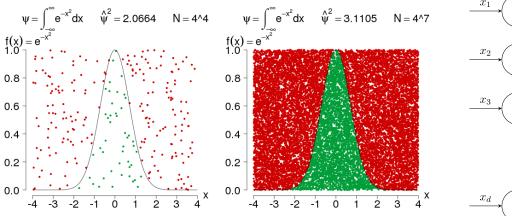
Slab geometry neutron transport

$$\mu \frac{\partial \psi(z,\mu)}{\partial z} + \Sigma_t(z)\psi(z,\mu) = 2\pi \int_{-1}^1 d\mu' \Sigma_s(z,\mu_0)\psi(z,\mu') + \frac{1}{2} \bigg[\nu \Sigma_f(z)\phi(z) + Q_{ext}(z)\bigg]$$

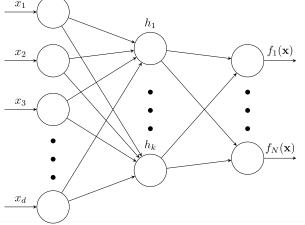
Discrete ordinates

$$\frac{\mu_m}{l_j} \left(\psi_{m,j+\frac{1}{2}}^{(l+1)} - \psi_{m,j-\frac{1}{2}}^{(l+1)} \right) + \Sigma_{t,j} \psi_{m,j}^{(l+1)} = \frac{1}{2} \hat{Q}_{m,j}^{(l)}$$

Monte Carlo



Neural network

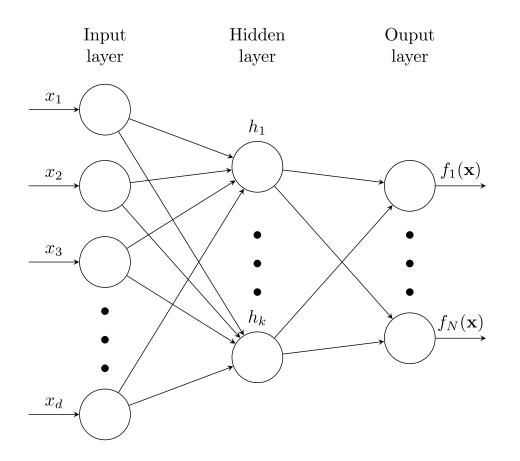


A neural network is a function approximation technique

- Input $\mathbf{x} \in \mathbb{R}^d$
- Output $f(\mathbf{x}) \in \mathbb{R}^N$
- Non-linear activation function

$$h_i = \sigma(\mathbf{w}_i^T \mathbf{x} + b_i)$$

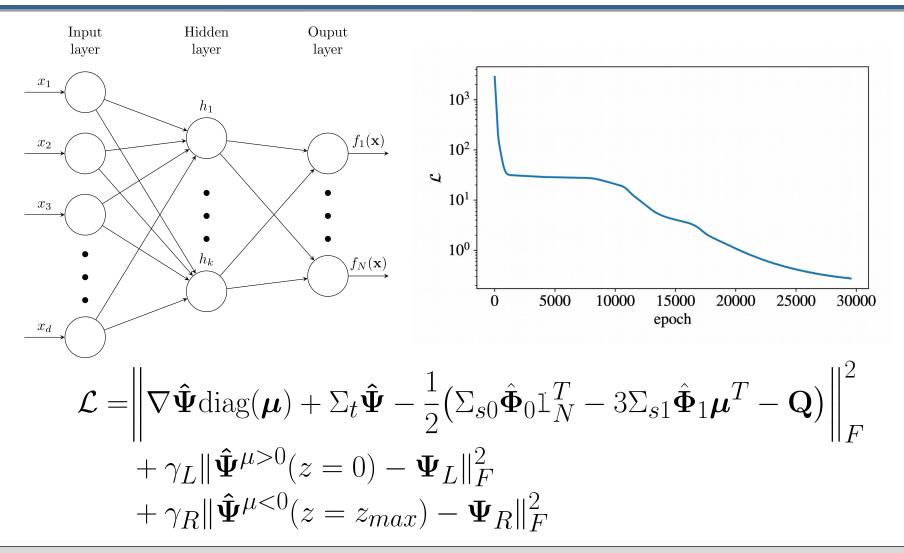
- Weights $\mathbf{w}_i \in \mathbb{R}^n$
- Biases b_i



Methods

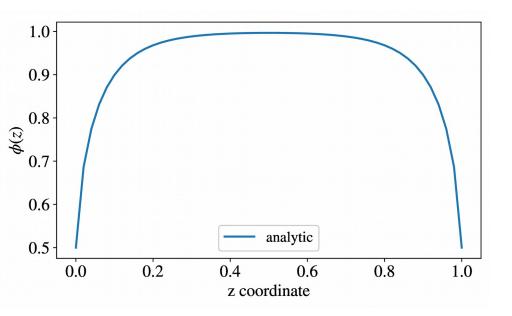
Methods

The neural network minimizes a loss function

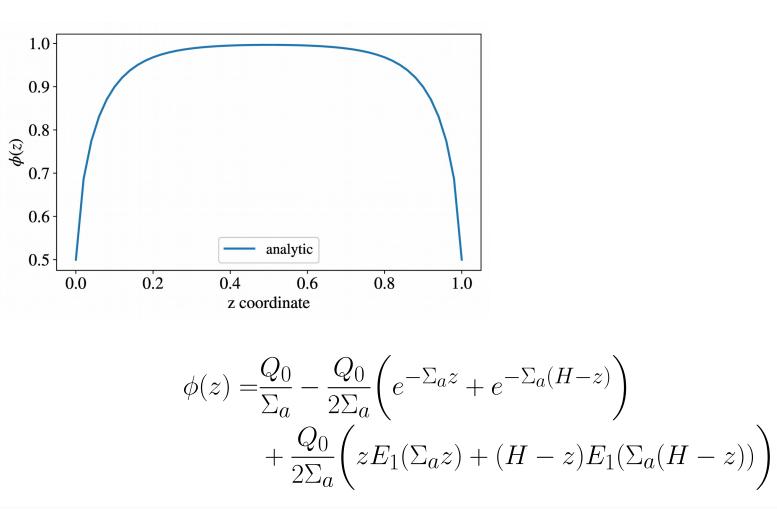


Lawrence Livermore National Laboratory

We tested the neural network using a homogeneous medium, uniform source problem



We tested the neural network using a homogeneous medium, uniform source problem



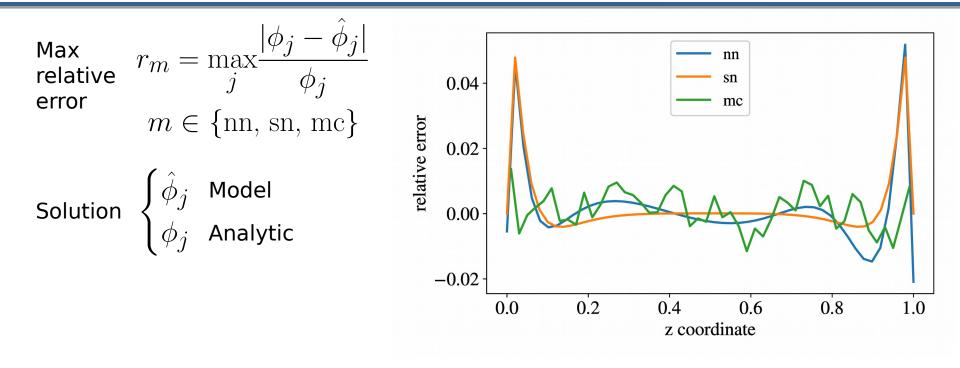
We tested the neural network using a homogeneous medium, uniform source problem

		Parameter	Value	Description
		Σ_t	8	Total cross section (cm^{-1})
		Σ_{s0}	0	Total scattering cross section (cm^{-1})
		Σ_{s1}	0	Linearly anisotropic cross section (cm^{-1})
/		Q_0	8	External source magnitude
/		J_{nn}	50	Number of zones for NN solution
1		J_{sn}	50	Number of zones for S_N solution
		J_{mc}	50	Number of zones for MC solution
		NR_{nn}	4	Number of ordinates for NN solution
		NR_{sn}	4	Number of ordinates for S_N solution
analytic		NP	1e6	Number of particles for MC solution
		ϵ_{nn}	1e-6	Convergence criterion value for NN solution
0.2 0.4 0.6	0.8 1.0	ϵ_{sn}	1e-13	Convergence criterion value for S_N solution
z coordinate		k	5	Number of hidden layer nodes in NN

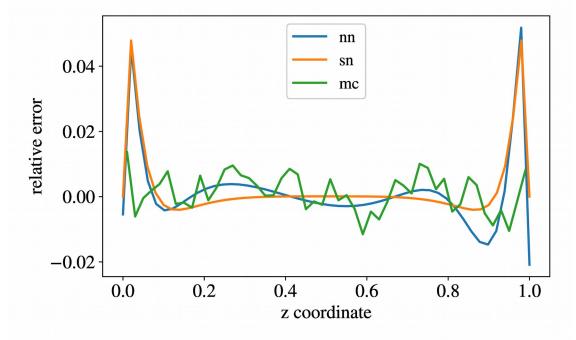
$$\phi(z) = \frac{Q_0}{\Sigma_a} - \frac{Q_0}{2\Sigma_a} \left(e^{-\Sigma_a z} + e^{-\Sigma_a (H-z)} \right) + \frac{Q_0}{2\Sigma_a} \left(z E_1(\Sigma_a z) + (H-z) E_1(\Sigma_a (H-z)) \right)$$

Results

The neural network is correct* and fast**



 $\begin{array}{l} \underset{\text{relative error}}{\text{Max}} & r_m = \underset{j}{\max} \frac{|\phi_j - \phi_j|}{\phi_j} \\ & m \in \{ \mathrm{nn, \, sn, \, mc} \} \end{array}$ $\begin{array}{l} \underset{\phi_j}{\text{Solution}} & \begin{cases} \hat{\phi}_j & \text{Model} \\ \phi_j & \text{Analytic} \end{cases} \end{array}$



Max relative error

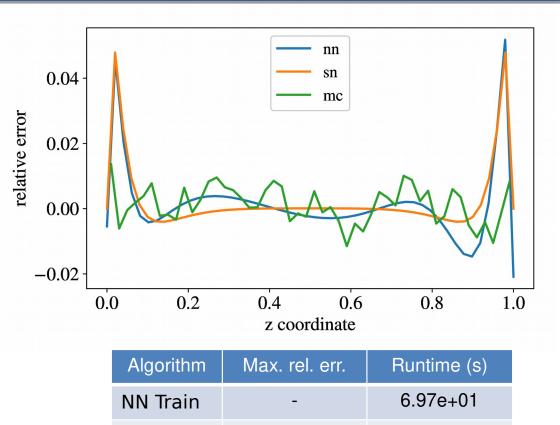
$$m \in \{\mathrm{nn, sn, mc}\}$$

 $r_m = \max_i \frac{|\phi_j - \phi_j|}{\phi_i}$

Solution $\begin{cases} \phi \\ \phi \end{cases}$

$$b_j$$
 Model
 b_j Analytic

*Conservation and symmetry are not preserved



0.051807

0.047869

0.013654

NN Pred

SN

MC

1.39e-04

4.39e-03

2.77e+00

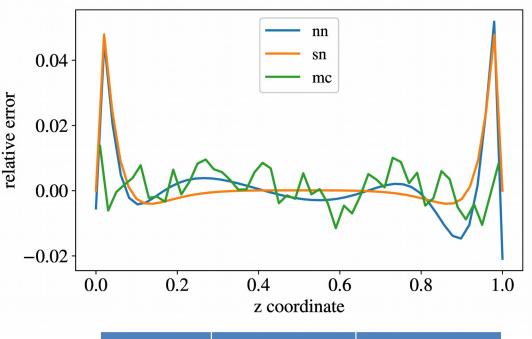
Max relative error

$$r_m = \max_j \frac{|\phi_j - \phi_j|}{\phi_j}$$
$$m \in \{\text{nn, sn, mc}\}$$

Solution $\begin{cases} \phi_j & \text{Model} \\ \phi_j & \text{Analytic} \end{cases}$

*Conservation and symmetry are not preserved

**If training can be amortized



Algorithm	Max. rel. err.	Runtime (s)
NN Train	-	6.97e+01
NN Pred	0.051807	1.39e-04
SN	0.047869	4.39e-03
MC	0.013654	2.77e+00

Thanks for the help!

 Thanks Kyle Bilton for working with me, Jasmina Vujic for inspiring us, and Patrick Brantley for suggesting the topic, providing initial guidance, and providing feedback on this talk

References

- P. S. Brantley. Spatial treatment of the slab-geometry discrete ordinates equations using artificial neural networks. Technical Report UCRL-JC-143205. Lawrence Livermore National Laboratory. Livermore, California, September 2001.
- Michael M. Pozulp. 1D Transport Using Neural Nets, SN, and MC. LLNL-CONF-772639. M&C 2019. Portland, Oregon (August 25-29, 2019).

Ongoing research

- Bob Anderson (LLNL), machine learning for transport
- Todd Palmer & students (OSU), machine learning and neural nets in 2D

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.