
LLNL-PRES-787821

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Status of LLNL Monte Carlo Transport Codes on
Sierra GPUs
M&C 2019

M. Scott McKinley, Ryan Bleile, Patrick Brantley, Shawn Dawson,
Matt O’Brien, Mike Pozulp, David Richards

August 28, 2019

LLNL-PRES-787821

2

▪ Mercury and Imp share common code to help with porting

▪ Porting to the GPU relies on new nuclear data format and
collision physics library

▪ Porting issues
— Memory model
— Fat / thin threads
— Tally replication
— History vs event based algorithm
— Hybrid CPU+GPU load balancing
— Nuclear data routines on the CPU+GPU

▪ Results

▪ Future work

Overview

Outline

LLNL-PRES-787821

3

▪ Transports neutrons, photons, and light element (hydrogen and
helium) charged particles
— Transport is super thermal with special thermalization models for

neutrons

▪ Relativistic physics

▪ Treats fixed source and criticality problems

▪ Parallelized via domain replication and domain decomposition

▪ Written in C++ with a Python user interface

▪ Runs efficiently on current generation massively parallel
computing platforms

Mercury is the next-generation general purpose Monte Carlo particle
transport code under development at LLNL

Mercury

LLNL-PRES-787821

4

Imp implements the standard implicit Monte Carlo multigroup algorithm
for thermal x-ray photon transport for the frequency-dependent case

* Pomraning (1973)

The development of Imp has been strongly influenced by and benefited from the algorithmic
implementations in and experience gained from the Kull IMC photon transport capability

▪ The frequency-dependent photon transport equation in the absence of
scattering and external sources is given by*

▪ The Planck function is given by

▪ The transport equation is coupled to a material energy balance equation
given by

▪ Source tilt and random walk acceleration algorithms implemented

Imp

LLNL-PRES-787821

5

▪ MCShared: shared Monte Carlo infrastructure
— geometry via constructive solid geometry or mesh
— particle tracking through geometry
— MPI/OpenMP parallelism and load balancing
— standard and user-defined tallies
— variance reduction
— random number generators
— general sources
— input parsing, restart/checkpoint, visualization/graphics files
— edit and plotting capabilities, etc.

▪ Imp: IMC-specific parts of the source code base
— effective scattering, thermal emission, opacities, scattering

physics, source tilting, random walk acceleration, etc.

▪ Mercury: particle transport-specific parts of the source code
base
— nuclear data and collision physics functionality, particle-specific

collision functionality, criticality eigenvalue solvers, etc.

▪ Imp-specific or Mercury-specific code capabilities are
combined with MCShared to produce either Imp or Mercury

▪ MCShared approximately 80% of the source code base, with
Mercury- and Imp-specific parts of the source code base
comprising ~10% each

The Imp IMC thermal photon transport capability is being developed using
Monte Carlo infrastructure shared with the Mercury Monte Carlo particle
transport capability

Code Sharing

MCShared

~80%

Mercury-

Specific

~10%

Imp-

Specific

~10%

Imp Mercury

A large fraction of the consolidated source code base is reused between Imp and Mercury

LLNL-PRES-787821

6

▪ Working Party on Evaluation Cooperation (WPEC) formed a new
sub-group (SG38) to create GNDS
— Titled “Beyond the ENDF format: a modern nuclear database structure”

▪ GNDS
— Is hierarchical in a format like XML or HDF5
— Supports any projectile/target
— Works with an external database to give consistent nuclear masses, levels

and lifetimes
— Stores units and interpolations with data
— Allows for experimental, evaluated and processed data to be stored in

the same format/location

The porting of Mercury to the Sierra GPUs relies on the Generalized
Nuclear Data Structure (GNDS)/Generalized Interaction Data Interface
(GIDI) nuclear data infrastructure

Nuclear Data

LLNL-PRES-787821

7

▪ Interface to accessing data in GNDS format

▪ MCGIDI is the Monte Carlo component that samples reactions
— This is the only component currently ported to the GPU

▪ Benefits of GNDS/GIDI over legacy solution
— More accurate sampling of the data since it can use the pdf and functional forms of

the data
— Versatility of temperature and energy bin boundary data due to processing data on the

fly*
— Photonuclear reactions
— Continuous energy, fixed grid* and multigroup available for most trackable particles
— Unresolved resonance treatment as pdf instead of a few lines
— Heating* of Thermal Scatter Law (a.k.a. S(a,b)) molecular data
— Continuous energy gain*, energy deposition and energy production cross sections

• Also supports more accurate heating of energy deposition data
— Support new projectile types*
— Will allow for better data sharing via GNDS between the labs for code comparisons

Generalized Interaction Data Interface (GIDI)

Nuclear Data

* Not yet implemented

LLNL-PRES-787821

8

Next generation architecture is GPU centric

IBM Power 9 CPU

<10% Sierra Flops
Nvidia Volta GPU

> 90% Sierra Flops

16 GB HBM/GPU

~4200 nodes

Each node has:

40 Power9 CPU Cores

4 Volta GPU

Sierra

LLNL-PRES-787821

9

▪ Sierra GPU port of both capabilities facilitated by the evolution of the
particle and thermal photon transport capabilities into a consolidated
source code base
— Separate Mercury particle transport and new Imp IMC thermal photon

transport capabilities are now built from shared infrastructural source code

▪ Initial GPU porting approach:
— “big kernel” history-based particle tracking kernel based on early research
— Cuda managed memory

▪ Mercury and Imp physics results on the GPU are correct
— Nightly test suite compares GPU to CPU results

The Mercury particle transport and Imp IMC thermal photon transport
capabilities have been initially ported to the Sierra GPU architecture

▪ Current Monte Carlo simulation results exhibit some slowdowns and some speedups on the
Sierra GPUs compared to a CTS-1 node
— Hybrid CPU+GPU approach improves performance overall
— Imp IMC photon transport generally exhibiting better performance than Mercury particle transport

▪ Monte Carlo history-based transport is not amenable to typical GPU fine-grained threading
— Particle tracking loop is thousands of lines of branchy, latency sensitive code

▪ Current focus is on refactoring to improve GPU performance, investigating CPU+GPU hybrid
approach, and beginning to research event-based/kernel splitting approaches

Mercury Calculation

Imp Calculation

Porting to Sierra GPUs

LLNL-PRES-787821

10

▪ Memory Allocation
— Memory allocation on the GPU is very slow – best to avoid

▪ Copying Memory
— Too much data to easily copy by hand
— Need to make sure the calculation pays for the overhead of copying memory
— CudaMallocManaged provides universal addressing from CPU and GPU

• About 300 times slower than malloc
• Either page (4k) or texture (0.5k) minimum allocation

– Easy to run out of memory
• Mitigate by allocating large memory chunk and using Umpire, a third party memory pool library

▪ C++ classes
— CudaMallocManaged can support pointers

• It can not handle pointers to functions
• Therefore, it cannot handle virtual functions in a class
• Have to build objects on the GPU that have virtual functions

— Does not support the Standard Template Library (STL)
• Mixed success with Thrust

▪ Code does a lot of integer arithmetic, memory lookups and Boolean
decisions
— Low number of floating point operations

We have chosen to initially use managed
memory to facilitate porting to Sierra

Memory Model

LLNL-PRES-787821

11

We implemented a new thin threading model to
facilitate porting to the Sierra GPUs

Fat thread

▪ Dozens of active threads

▪ Separate container of
particles for each thread

▪ Data races managed with
replication

▪ MPI tightly integrated in
tracking loop

▪ Works well on CPUs

Thin thread

▪ Thousands of active threads

▪ All threads share a common
container of particles

▪ Data races managed with
atomics

▪ No MPI in tracking loop

▪ Works on GPUs and CPUs

Threading Model

LLNL-PRES-787821

12

▪ Our Particle_Vault data structure is an array of pointers to Chunks of
particles

▪ We execute one kernel launch per chunk of particles

▪ Before each kernel launch, we make sure we have enough pre-
allocated extra chunks for created particles

▪ When en-queueing created particles, we atomically get a slot index to
store the particle

▪ We do MPI streaming communication between kernel launches

Thin Thread Particle Tracking Loop

Kernel_Launch<<<>>>

Kernel_Launch<<<>>>

Kernel_Launch<<<>>>

Kernel_Launch<<<>>>

Launching Kernels

LLNL-PRES-787821

13

▪ Two main types of tallies
— Low memory but accessed a lot such as the balance tally

• Counts number of collisions, number of fissions, etc.
— High memory ones like scalar flux

• Array over particle type, cell, and energy

▪ Under our previous fat thread mode, each tally was replicated over
threads and MPI ranks
— With thousands of GPU threads, this will no longer work due to memory

constraints

▪ Atomics on tallies can create bottlenecks with certain types of tallies
like the balance tally

▪ Our solution was for each type of tally to have its own independent
replication level
— Full replication is no longer required since atomics will still be used, but

conflicts may be rarer

We implemented variable replication of data structures
to reduce memory and race conditions

Tallies

LLNL-PRES-787821

14

▪ History Based Algorithm
— For each particle, computes the distances to each possible event (i.e. Census, Facet Crossing, Collision,

etc.)
• Low divergence

— Perform Event
• High divergence

— Repeat

▪ Event Based Algorithm
— Computes the distances to each possible event for all particles

• Low divergence
— Sort particles into queues of similar events

• Could be slow or have small pools
— Perform the event on the pools of particles

• Low divergence

▪ Speculation was event modeling could pay off well on a GPU device

▪ Testing from a small mini-app showed the performance of history- and event-based were
similar on the GPU

▪ Results from ORNL showed some good gains from event based

▪ We expect event based approach to lead to lower register pressure with more kernel calls

Monte Carlo History / Event Based Algorithm

History / Event

LLNL-PRES-787821

15

▪ Each rank could control 1 or more processors
— e.g. A rank on CPU could be threaded

▪ Calculate the average speed in particles per second of MPI ranks
with GPUs and MPI ranks without GPUs
— Speed is determined based on previous cycle

▪ To balance the workload, ranks with too many particles send
them to ranks with too few so that every rank is expected to run
the same amount of time
— Using a min/max priority queue

▪ Using this resulted in 1.8X speedup in Mercury and 4.3X in Imp
for one particular problem

In a problem in which MPI ranks control a CPU or GPU processor(s), how do
you load balance particles?

Hybrid CPU+GPU Load Balancing

LLNL-PRES-787821

16

▪ MCGIDI for Monte Carlo is written in C++ and uses
polymorphism with virtual functions
— Managed memory does not work with virtual functions

▪ Wrote a serialize function to pack or unpack the data into a data
stream
— Read in on CPU; pack data; copy to GPU; unpack on GPU
— Unpacking involves placement new operations

▪ Changed exception handling from throws to print statements

▪ Added classes to mock up std::string and std::vector

▪ Deep call stack is not optimal for GPUs

GPU Porting Progress of MCGIDI

Nuclear Data

LLNL-PRES-787821

17

▪ Godiva critical sphere surrounded by water*, calculate 𝛼 eigenvalue

▪ Combinatorial geometry, continuous energy nuclear data, 4×106 MC neutrons
per time step

▪ 36 CTS-1 cores, 40 P9 CPU cores, 4 V100 GPUs, or 4 V100 GPUs + 36 P9 CPU
cores

▪ Mercury GPU physics results in excellent agreement with CPU results
— 𝛼 = 9.50437 𝜇s-1 agrees to 5 digits, well within statistics

▪ 4 GPU+36 core simulation exhibits a ~1.2X overall speedup compared to a CTS-
1 node
— Particle tracking ~1.5X faster on 4 GPUs+36 cores

We assessed Mercury neutron transport on Sierra using
a Godiva in water test problem

* D. E. Cullen, C. J. Clouse, R. Procassini, R. C. Little,

“Static and Dynamic Criticality: Are They Different,” UCRL-TR-201506 (2003)

Resources CPU / GPU
Total Time

[minutes]

Particle Time

[minutes]

Init/Final Time

[minutes]

CTS-1 36 cores 1.43 1.28 0.16

P9 40 cores 1.76 (0.82X) 1.54 (0.83X) 0.22 (0.72X)

V100 4 GPUs 1.76 (0.81X) 1.59 (0.81X) 0.18 (0.89X)

V100+P9 4 GPUs + 36 cores 1.19 (1.20X) 0.88 (1.45X) 0.31 (0.50X)

Particles Colored

By Material

Godiva in Water

LLNL-PRES-787821

18

▪ Idealized radiation transport test problem*
— RZ geometry, constant gray opacity, constant specific heat, 300 eV

black body source

▪ 20×106 MC photons per time step, simulation run to 10​-5 s
with variable time step (1,063 cycles)

▪ 36 CTS-1 cores, 40 P9 CPU cores, 4 V100 GPUs , or 4 V100
GPUs + 36 P9 CPU cores

▪ Imp IMC GPU+CPU physics results in excellent agreement with
CPU results and with Kull IMC

▪ 4 GPU+36 core simulation exhibits a ~2.4X overall speedup
compared to a CTS-1 node
— Particle tracking ~2.5X faster on 4 GPUs+36 cores

We assessed Imp IMC thermal photon transport on
Sierra using the Crooked Pipe test problem*

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,”

UCRL-MI-143393 (2000)

Resources CPU / GPU
Total Time

[minutes]

Particle Time

[minutes]

Init/Final Time

[minutes]

CTS-1 [run136] 36 cores 471.4 458.8 12.67

P9 [run137] 40 cores 561.6 (0.84X) 524.6 (0.87X) 36.95 (0.34X)

V100 [run138] 4 GPUs 236.7 (1.99X) 226.2 (2.03X) 10.51 (1.21X)

V100+P9 [run139] 4 GPUs + 36 cores 193.4 (2.44X) 181.9 (2.52X) 11.56 (1.10X)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Crooked Pipe

LLNL-PRES-787821

19

▪ We have developed the new Imp IMC capability based on
infrastructure shared with the Mercury Monte Carlo code

▪ Both Mercury and Imp have been initially ported to run on the
Sierra GPU architecture

▪ The physics results of both capabilities are correct, and we are
working to improve the GPU performance

▪ The development of consolidated capabilities enables us to
tackle the ongoing challenges posed by the Sierra GPU
architecture for Monte Carlo particle and photon transport in a
consistent framework

Conclusions

Conclusions

LLNL-PRES-787821

20

▪ Continue performance optimization

▪ Investigate event-based and kernel splitting approaches for
tracking particles on the Sierra GPU architecture

▪ Look at Unity builds to see if call stack sizes can be decreased
— Start with MCGIDI and then see if the whole code can be built this way

▪ Look at ways to simplify the collision event routines so
Mercury’s collision speed can get closer to Imp’s speed

Future Strategy

Future Strategy

LLNL-PRES-787821

21

Backup slides

LLNL-PRES-787821

22

▪ Imp implements the standard implicit Monte Carlo
multigroup algorithm for thermal x-ray photon
transport for the frequency-dependent case

▪ A major driver for this code sharing approach is to
enable a consolidated source code base for porting
to the LLNL Sierra supercomputer
— Sierra: IBM/Nvidia machine with two IBM Power9 CPUs

(44 cores) and four Nvidia Volta V100 GPUs per node

▪ This shared source code base enables:
— advanced architecture implementations to benefit both

Mercury and Imp
— common use of code infrastructure/capabilities:

geometry representation, particle tracking through
geometry, MPI/OpenMP parallelism, load balancing,
standard/user-defined tallies, variance reduction,
input/output for parsing & restart/graphics files, etc.

— project staff to have expertise in both implementations
for debugging/user support

The LLNL Monte Carlo Transport Project is developing a new IMC thermal
photon transport capability called Imp using infrastructural components
shared with the Mercury Monte Carlo particle transport code

Imp

LLNL-PRES-787821

23

Mercury Parallelization Model

Particle Communication Between

Adjacent Spatial Domains

“Summing” Communication Between

Replicated Spatial Domains

Domain Decomposition and Domain Replication

(4-way Spatial and 2-way Particle Parallelism)

▪ Supervisor MPI Ranks
— In control of a spatial section of

the geometry

▪ Worker MPI Ranks
— Replicate the work of a

supervisor
— May be moved around as

needed for load balancing

▪ A MPI rank may thread its
work if additional
computational resources are
available

LLNL-PRES-787821

24

▪ Until relatively recently, MPI has been the main mechanism of
porting to new computer platforms
— OpenMP threading was available, but it was always slower
— Scaled to millions of processors using both MPI and OpenMP

▪ In more recent hardware, OpenMP threading became fast
enough and could save memory
— In many problems it sped up

the initialization and
finalization sections of a
cycle due to threaded loops
over zones

▪ Shared memory MPI has
been used for the nuclear
data

From MPI to MPI+OpenMP

Parallelization

LLNL-PRES-787821

25

Advanced Architectures

▪ Many-Core (like Trinity)
— Many relatively small

homogeneous compute cores
— 10’s of thousands of nodes with

millions of cores
— Multiple levels of memory
— Single/Dual rail high

performance network

▪ Hybrid Multi-Core (like Sierra)
— Multiple CPUs and accelerators

per node
— Small(ish) number of very

powerful nodes
— Multiple levels of memory
— Multi-rail high performance

network

CPU

HBM

CPU

HBM

D
D

R

CPU
CPU D

D
R

GPU

H
B

M

GPU

H
B

M

Notional Many-Core Node Notional Hybrid Multi-Core Node

LLNL-PRES-787821

26

GPU Challenge - Divergence

LLNL-PRES-787821

27

Current Code Flow

Cycle Initialization

Source in particles

Allocate tally memory

Cycle Tracking

Loop over all particles on processor

Compute the next segment

Find smallest distance to facet, collision, census

Perform event for this particle

Update tallies

Sometimes check to see if we need to send/receive particles (MPI streaming)

Check to see if we are done with problem

Cycle Finalize

Compute global based tallies

Reduce tallies

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United

States government. Neither the United States government nor Lawrence Livermore National

Security, LLC, nor any of their employees makes any warranty, expressed or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or process disclosed, or represents that its use would

not infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring by the United

States government or Lawrence Livermore National Security, LLC. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States

government or Lawrence Livermore National Security, LLC, and shall not be used for

advertising or product endorsement purposes.

