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▪ Mercury and Imp share common code to help with porting

▪ Porting to the GPU relies on new nuclear data format and 
collision physics library

▪ Porting issues
— Memory model
— Fat / thin threads
— Tally replication
— History vs event based algorithm
— Hybrid CPU+GPU load balancing
— Nuclear data routines on the CPU+GPU

▪ Results

▪ Future work

Overview

Outline
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▪ Transports neutrons, photons, and light element (hydrogen and 
helium) charged particles 
— Transport is super thermal with special thermalization models for 

neutrons

▪ Relativistic physics

▪ Treats fixed source and criticality problems 

▪ Parallelized via domain replication and domain decomposition 

▪ Written in C++ with a Python user interface 

▪ Runs efficiently on current generation massively parallel 
computing platforms 

Mercury is the next-generation general purpose Monte Carlo particle 
transport code under development at LLNL 

Mercury
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Imp implements the standard implicit Monte Carlo multigroup algorithm 
for thermal x-ray photon transport for the frequency-dependent case

* Pomraning (1973)

The development of Imp has been strongly influenced by and benefited from the algorithmic 
implementations in and experience gained from the Kull IMC photon transport capability

▪ The frequency-dependent photon transport equation in the absence of 
scattering and external sources is given by*

▪ The Planck function is given by

▪ The transport equation is coupled to a material energy balance equation 
given by

▪ Source tilt and random walk acceleration algorithms implemented

Imp
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▪ MCShared: shared Monte Carlo infrastructure
— geometry via constructive solid geometry or mesh
— particle tracking through geometry
— MPI/OpenMP parallelism and load balancing
— standard and user-defined tallies
— variance reduction
— random number generators
— general sources 
— input parsing, restart/checkpoint, visualization/graphics files
— edit and plotting capabilities, etc.

▪ Imp: IMC-specific parts of the source code base
— effective scattering, thermal emission, opacities, scattering 

physics, source tilting, random walk acceleration, etc.

▪ Mercury: particle transport-specific parts of the source code 
base
— nuclear data and collision physics functionality, particle-specific 

collision functionality, criticality eigenvalue solvers, etc.

▪ Imp-specific or Mercury-specific code capabilities are 
combined with MCShared to produce either Imp or Mercury

▪ MCShared approximately 80% of the source code base, with 
Mercury- and Imp-specific parts of the source code base 
comprising ~10% each

The Imp IMC thermal photon transport capability is being developed using 
Monte Carlo infrastructure shared with the Mercury Monte Carlo particle 
transport capability

Code Sharing

MCShared

~80%

Mercury-

Specific

~10%

Imp-

Specific

~10%

Imp Mercury

A large fraction of the consolidated source code base is reused between Imp and Mercury
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▪ Working Party on Evaluation Cooperation (WPEC) formed a new 
sub-group (SG38) to create GNDS
— Titled “Beyond the ENDF format: a modern nuclear database structure”

▪ GNDS
— Is hierarchical in a format like XML or HDF5
— Supports any projectile/target
— Works with an external database to give consistent nuclear masses, levels 

and lifetimes
— Stores units and interpolations with data
— Allows for experimental, evaluated and processed data to be stored in 

the same format/location

The porting of Mercury to the Sierra GPUs relies on the Generalized 
Nuclear Data Structure (GNDS)/Generalized Interaction Data Interface 
(GIDI) nuclear data infrastructure

Nuclear Data
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▪ Interface to accessing data in GNDS format

▪ MCGIDI is the Monte Carlo component that samples reactions
— This is the only component currently ported to the GPU

▪ Benefits of GNDS/GIDI over legacy solution
— More accurate sampling of the data since it can use the pdf and functional forms of 

the data
— Versatility of temperature and energy bin boundary data due to processing data on the 

fly*
— Photonuclear reactions 
— Continuous energy, fixed grid* and multigroup available for most trackable particles
— Unresolved resonance treatment as pdf instead of a few lines
— Heating* of Thermal Scatter Law (a.k.a. S(a,b)) molecular data
— Continuous energy gain*, energy deposition and energy production cross sections

• Also supports more accurate heating of energy deposition data
— Support new projectile types*
— Will allow for better data sharing via GNDS between the labs for code comparisons

Generalized Interaction Data Interface (GIDI)

Nuclear Data

* Not yet implemented
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Next generation architecture is GPU centric

IBM Power 9 CPU

<10% Sierra Flops
Nvidia Volta GPU

> 90% Sierra Flops

16 GB HBM/GPU

~4200 nodes

Each node has:

40 Power9 CPU Cores

4 Volta GPU

Sierra
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▪ Sierra GPU port of both capabilities facilitated by the evolution of the 
particle and thermal photon transport capabilities into a consolidated 
source code base
— Separate Mercury particle transport and new Imp IMC thermal photon 

transport capabilities are now built from shared infrastructural source code

▪ Initial GPU porting approach:
— “big kernel” history-based particle tracking kernel based on early research
— Cuda managed memory

▪ Mercury and Imp physics results on the GPU are correct
— Nightly test suite compares GPU to CPU results

The Mercury particle transport and Imp IMC thermal photon transport 
capabilities have been initially ported to the Sierra GPU architecture

▪ Current Monte Carlo simulation results exhibit some slowdowns and some speedups on the 
Sierra GPUs compared to a CTS-1 node
— Hybrid CPU+GPU approach improves performance overall
— Imp IMC photon transport generally exhibiting better performance than Mercury particle transport 

▪ Monte Carlo history-based transport is not amenable to typical GPU fine-grained threading
— Particle tracking loop is thousands of lines of branchy, latency sensitive code

▪ Current focus is on refactoring to improve GPU performance, investigating CPU+GPU hybrid 
approach, and beginning to research event-based/kernel splitting approaches

Mercury Calculation

Imp Calculation

Porting to Sierra GPUs
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▪ Memory Allocation
— Memory allocation on the GPU is very slow – best to avoid

▪ Copying Memory
— Too much data to easily copy by hand
— Need to make sure the calculation pays for the overhead of copying memory
— CudaMallocManaged provides universal addressing from CPU and GPU

• About 300 times slower than malloc
• Either page (4k) or texture (0.5k) minimum allocation

– Easy to run out of memory
• Mitigate by allocating large memory chunk and using Umpire, a third party memory pool library

▪ C++ classes
— CudaMallocManaged can support pointers

• It can not handle pointers to functions
• Therefore, it cannot handle virtual functions in a class
• Have to build objects on the GPU that have virtual functions

— Does not support the Standard Template Library (STL)
• Mixed success with Thrust

▪ Code does a lot of integer arithmetic, memory lookups and Boolean 
decisions
— Low number of floating point operations

We have chosen to initially use managed 
memory to facilitate porting to Sierra

Memory Model
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We implemented a new thin threading model to 
facilitate porting to the Sierra GPUs

Fat thread

▪ Dozens of active threads

▪ Separate container of 
particles for each thread

▪ Data races managed with 
replication

▪ MPI tightly integrated in 
tracking loop

▪ Works well on CPUs

Thin thread

▪ Thousands of active threads

▪ All threads share a common 
container of particles

▪ Data races managed with 
atomics

▪ No MPI in tracking loop

▪ Works on GPUs and CPUs

Threading Model
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▪ Our Particle_Vault data structure is an array of pointers to Chunks of 
particles

▪ We execute one kernel launch per chunk of particles    

▪ Before each kernel launch, we make sure we have enough pre-
allocated extra chunks for created particles    

▪ When en-queueing created particles, we atomically get a slot index to 
store the particle    

▪ We do MPI streaming communication between kernel launches 

Thin Thread Particle Tracking Loop

Kernel_Launch<<<>>>

Kernel_Launch<<<>>>

Kernel_Launch<<<>>>

Kernel_Launch<<<>>>

Launching Kernels
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▪ Two main types of tallies
— Low memory but accessed a lot such as the balance tally

• Counts number of collisions, number of fissions, etc.
— High memory ones like scalar flux

• Array over particle type, cell, and energy

▪ Under our previous fat thread mode, each tally was replicated over 
threads and MPI ranks
— With thousands of GPU threads, this will no longer work due to memory 

constraints

▪ Atomics on tallies can create bottlenecks with certain types of tallies 
like the balance tally

▪ Our solution was for each type of tally to have its own independent 
replication level
— Full replication is no longer required since atomics will still be used, but 

conflicts may be rarer

We implemented variable replication of data structures 
to reduce memory and race conditions

Tallies
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▪ History Based Algorithm
— For each particle, computes the distances to each possible event (i.e. Census, Facet Crossing, Collision, 

etc.)
• Low divergence

— Perform Event
• High divergence

— Repeat

▪ Event Based Algorithm
— Computes the distances to each possible event for all particles

• Low divergence
— Sort particles into queues of similar events

• Could be slow or have small pools
— Perform the event on the pools of particles

• Low divergence

▪ Speculation was event modeling could pay off well on a GPU device

▪ Testing from a small mini-app showed the performance of history- and event-based were 
similar on the GPU

▪ Results from ORNL showed some good gains from event based

▪ We expect event based approach to lead to lower register pressure with more kernel calls

Monte Carlo History / Event Based Algorithm

History / Event
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▪ Each rank could control 1 or more processors
— e.g. A rank on CPU could be threaded

▪ Calculate the average speed in particles per second of MPI ranks 
with GPUs and MPI ranks without GPUs 
— Speed is determined based on previous cycle

▪ To balance the workload, ranks with too many particles send 
them to ranks with too few so that every rank is expected to run 
the same amount of time
— Using a min/max priority queue

▪ Using this resulted in 1.8X speedup in Mercury and 4.3X in Imp 
for one particular problem

In a problem in which MPI ranks control a CPU or GPU processor(s), how do 
you load balance particles?

Hybrid CPU+GPU Load Balancing
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▪ MCGIDI for Monte Carlo is written in C++ and uses 
polymorphism with virtual functions
— Managed memory does not work with virtual functions

▪ Wrote a serialize function to pack or unpack the data into a data 
stream
— Read in on CPU; pack data; copy to GPU; unpack on GPU
— Unpacking involves placement new operations

▪ Changed exception handling from throws to print statements

▪ Added classes to mock up std::string and std::vector

▪ Deep call stack is not optimal for GPUs

GPU Porting Progress of MCGIDI

Nuclear Data
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▪ Godiva critical sphere surrounded by water*, calculate 𝛼 eigenvalue

▪ Combinatorial geometry, continuous energy nuclear data, 4×106 MC neutrons 
per time step

▪ 36 CTS-1 cores, 40 P9 CPU cores, 4 V100 GPUs, or 4 V100 GPUs + 36 P9 CPU 
cores

▪ Mercury GPU physics results in excellent agreement with CPU results
— 𝛼 = 9.50437 𝜇s-1 agrees to 5 digits, well within statistics

▪ 4 GPU+36 core simulation exhibits a ~1.2X overall speedup compared to a CTS-
1 node
— Particle tracking ~1.5X faster on 4 GPUs+36 cores

We assessed Mercury neutron transport on Sierra using 
a Godiva in water test problem

* D. E. Cullen, C. J. Clouse, R. Procassini, R. C. Little, 

“Static and Dynamic Criticality: Are They Different,” UCRL-TR-201506 (2003)

Resources CPU / GPU
Total Time

[minutes]

Particle Time

[minutes]

Init/Final Time

[minutes]

CTS-1 36 cores 1.43 1.28 0.16

P9 40 cores 1.76 (0.82X) 1.54 (0.83X) 0.22 (0.72X)

V100 4 GPUs 1.76 (0.81X) 1.59 (0.81X) 0.18 (0.89X)

V100+P9 4 GPUs + 36 cores 1.19 (1.20X) 0.88 (1.45X) 0.31 (0.50X)

Particles Colored 

By Material

Godiva in Water
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▪ Idealized radiation transport test problem*
— RZ geometry, constant gray opacity, constant specific heat, 300 eV 

black body source

▪ 20×106 MC photons per time step, simulation run to 10​-5 s 
with variable time step (1,063 cycles)

▪ 36 CTS-1 cores, 40 P9 CPU cores, 4 V100 GPUs , or 4 V100 
GPUs + 36 P9 CPU cores

▪ Imp IMC GPU+CPU physics results in excellent agreement with 
CPU results and with Kull IMC

▪ 4 GPU+36 core simulation exhibits a ~2.4X overall speedup 
compared to a CTS-1 node
— Particle tracking ~2.5X faster on 4 GPUs+36 cores

We assessed Imp IMC thermal photon transport on 
Sierra using the Crooked Pipe test problem*

* F. Graziani, J. LeBlanc, “The Crooked Pipe Test Problem,” 

UCRL-MI-143393 (2000)

Resources CPU / GPU
Total Time

[minutes]

Particle Time

[minutes]

Init/Final Time

[minutes]

CTS-1 [run136] 36 cores 471.4 458.8 12.67

P9 [run137] 40 cores 561.6 (0.84X) 524.6 (0.87X) 36.95 (0.34X)

V100 [run138] 4 GPUs 236.7 (1.99X) 226.2 (2.03X) 10.51 (1.21X)

V100+P9 [run139] 4 GPUs + 36 cores 193.4 (2.44X) 181.9 (2.52X) 11.56 (1.10X)

Te @ 10-5 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Optically thick
Optically thick

Optically thin

Crooked Pipe
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▪ We have developed the new Imp IMC capability based on 
infrastructure shared with the Mercury Monte Carlo code

▪ Both Mercury and Imp have been initially ported to run on the 
Sierra GPU architecture

▪ The physics results of both capabilities are correct, and we are 
working to improve the GPU performance

▪ The development of consolidated capabilities enables us to 
tackle the ongoing challenges posed by the Sierra GPU 
architecture for Monte Carlo particle and photon transport in a 
consistent framework

Conclusions

Conclusions
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▪ Continue performance optimization

▪ Investigate event-based and kernel splitting approaches for 
tracking particles on the Sierra GPU architecture

▪ Look at Unity builds to see if call stack sizes can be decreased
— Start with MCGIDI and then see if the whole code can be built this way

▪ Look at ways to simplify the collision event routines so 
Mercury’s collision speed can get closer to Imp’s speed

Future Strategy

Future Strategy
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Backup slides
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▪ Imp implements the standard implicit Monte Carlo 
multigroup algorithm for thermal x-ray photon 
transport for the frequency-dependent case

▪ A major driver for this code sharing approach is to 
enable a consolidated source code base for porting 
to the LLNL Sierra supercomputer
— Sierra: IBM/Nvidia machine with two IBM Power9 CPUs 

(44 cores) and four Nvidia Volta V100 GPUs per node

▪ This shared source code base enables:
— advanced architecture implementations to benefit both 

Mercury and Imp
— common use of code infrastructure/capabilities: 

geometry representation, particle tracking through 
geometry, MPI/OpenMP parallelism, load balancing, 
standard/user-defined tallies, variance reduction, 
input/output for parsing & restart/graphics files, etc.

— project staff to have expertise in both implementations 
for debugging/user support

The LLNL Monte Carlo Transport Project is developing a new IMC thermal 
photon transport capability called Imp using infrastructural components 
shared with the Mercury Monte Carlo particle transport code

Imp
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Mercury Parallelization Model

Particle Communication Between

Adjacent Spatial Domains

“Summing” Communication Between

Replicated Spatial Domains

Domain Decomposition and Domain Replication

(4-way Spatial and 2-way Particle Parallelism)

▪ Supervisor MPI Ranks
— In control of a spatial section of 

the geometry

▪ Worker MPI Ranks
— Replicate the work of a 

supervisor
— May be moved around as 

needed for load balancing

▪ A MPI rank may thread its 
work if additional 
computational resources are 
available
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▪ Until relatively recently, MPI has been the main mechanism of 
porting to new computer platforms
— OpenMP threading was available, but it was always slower
— Scaled to millions of processors using both MPI and OpenMP

▪ In more recent hardware, OpenMP threading became fast 
enough and could save memory
— In many problems it sped up

the initialization and 
finalization sections of a 
cycle due to threaded loops 
over zones

▪ Shared memory MPI has 
been used for the nuclear 
data

From MPI to MPI+OpenMP

Parallelization
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Advanced Architectures

▪ Many-Core (like Trinity)
— Many relatively small 

homogeneous compute cores
— 10’s of thousands of nodes with 

millions of cores
— Multiple levels of memory
— Single/Dual rail high 

performance network

▪ Hybrid Multi-Core (like Sierra)
— Multiple CPUs and accelerators 

per node
— Small(ish) number of very 

powerful nodes
— Multiple levels of memory
— Multi-rail high performance 

network

CPU

HBM

CPU

HBM

D
D

R

CPU
CPU D

D
R

GPU

H
B

M

GPU

H
B

M

Notional Many-Core Node Notional Hybrid Multi-Core Node
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GPU Challenge - Divergence
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Current Code Flow

Cycle Initialization

Source in particles

Allocate tally memory

Cycle Tracking

Loop over all particles on processor

Compute the next segment

Find smallest distance to facet, collision, census

Perform event for this particle

Update tallies

Sometimes check to see if we need to send/receive particles (MPI streaming)

Check to see if we are done with problem

Cycle Finalize

Compute global based tallies

Reduce tallies
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