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This poster exhibits our experience porting the Opacity client library [1] to IBM’s 

“Minsky” nodes [2] using OpenMP 4.5. We constructed a GPU-friendly container 

class that mimics existing library functionality. We benchmarked our 

implementation on Lawrence Livermore National Laboratory’s (LLNL) RZManta 

[3], a Minsky cluster. In our benchmarks on a single POWER8 CPU and Tesla 

P100 GPU, we observed up to 4x speedup including CPU-GPU data transfers, 

and up to 30x speedup excluding data transfers. Optimizing to reduce register 

pressure and increase occupancy may improve speedups. Our results 

demonstrate a successful and beneficial library port to the CPU-GPU 

architecture.
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Abstract
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OpenMP is used to achieve a portable, single source code solution, and since 

version 4.0, it has provided support for GPU offloading through its device 
constructs. OpenMP 4.5 provides additional features such as the target 

enter/exit data construct, which is used in our implementation.

The Opacity client library performs bilinear interpolations and various 

extrapolations to provide material opacities given density and electron 

temperature pairs. 

Figure 2. Expected kernel structure to maximize throughput, 
where Lookup() performs interpolations and extrapolations.

KULL [4] is one of LLNL’s multi-physics simulation codes that models high 

energy density physics applications such as inertial confinement fusion. KULL 

uses the Opacity client library to obtain opacity data for radiation transport 

simulations and aims to run on CPU-GPU clusters in the future.

Since the library runtime requires low FLOPs, most of the required work 

consists of providing offloading support such that KULL may increase the 

throughput of library calls (Figure 2).

#pragma omp target teams distribute parallel for map(…)

for (i=0; i<n; i++) {

gpu->Lookup(density[i], temperature[i], &opacity[i])

}

Figure 1. Bilinear interpolation returning P, where 

x and y are inputs and xi, yi, and Qij are known.

Figure 5. Loop Speedup vs. Number of Lookups, 

including data mapping
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Interpolants are read and distributed to many classes that often utilize the C++ 

Standard Template Library and virtual functions, making data transfer from host to 

device memory and generation of PTX instructions for GPUs more challenging.

We created a GPU-compatible, C-styled container class that directly stores 

interpolant values and implements methods to maintain original library 

functionality while minimizing changes to the user code (Figure 3).

Figure 3. Changes to user code.

Figure 4. Output provided by NVIDIA Visual Profiler [5] depicting high 

register pressure and low occupancy for Clang (left) and XL (right).

Currently, this port is not optimized and profiling reveals high register pressure 

and low occupancy (Figure 4), but how these values affect performance and how 

they can be optimized is beyond the scope of this work.

We ran a driver on an IBM Power System S822LC [2], which features 2 ten-core 

POWER8 prime CPUs, 4 NVIDIA Tesla P100 GPUs, and NVLink 1.0 interconnects. 

Wall times were collected for the Lookup() loop on the host using 40 hardware 

threads over one socket. Running on one P100, timings include and exclude time 

required to map the query data (Figure 7). Speedup is calculated as 
𝑡𝑖𝑚𝑒𝐶𝑃𝑈

𝑡𝑖𝑚𝑒𝐺𝑃𝑈
.

Results (cont.)

Currently, KULL needs to map query data before calling Lookup(). Accounting 

for this data movement, we see speedups from 1.3x to 4x depending on the 

number of lookups and the compiler (Figure 5). 

In the future, we expect KULL to initialize the query data in GPU memory. Thus, 

this data transfer will become unnecessary, resulting in speedups from 1.4x to 

30x (Figure 6).

Conclusion

With the ever increasing importance of the CPU-GPU architecture, many 

scientific applications will want to claim the advantages therein. With an 

unoptimized OpenMP 4.5 port, which features at its core a C-styled container 

class, performance gains were still observed and very attainable, peaking at 4x

when including CPU-GPU data transfers and 30x when all of the data can be 

kept in GPU memory. We are integrating the ported library into KULL, and we 

hope to experiment with different runtime configurations and code structures to 

optimize the utilization of GPU resources.
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OP::Enable_GPU(1); // Enable data mapping underneath existing

// function calls during setup

⋮
gpu = cpu->Get_GPU_Obj(); // Extract GPU-compatible object 

// before kernel launch

#pragma omp target teams distribute parallel for map(…)

for (i=0; i<n; i++)

gpu->Lookup(); // Swap original object for extracted object

// cpu->Lookup(); 

#pragma omp target data map(…) // data movement

{

double wtime = omp_get_wtime();

#pragma omp target teams distribute parallel for

for (i=0; i<n; i++)

gpu->Lookup(density[i], temperature[i], &opacity[i])

wtime = omp_get_wtime() - wtime;

}

Figure 7. Example structure of timing code 

that excludes time for data movement.

Figure 6. Loop Speedup vs. Number of Lookups, 

excluding data mapping

1.65

3.45

3.91 3.96

3.11

1.28

2.15

2.73 2.68 2.71

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

10 10 10 10 10

Lo
o

p
 S

p
ee

d
u

p

Number of Lookups

Clang

XL

4 5 6 7 8

1.75

5.10

14.30

26.14

29.74

1.37
3.10

9.18

17.03

19.21

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

10 10 10 10 10

Lo
o

p
 S

p
ee

d
u

p

Number of Lookups

Clang

XL

4 5 6 7 8

LLNL-POST-735790

https://wci.llnl.gov/simulation/support-libraries
https://hpc.llnl.gov/hardware/platforms/RZManta
https://developer.nvidia.com/nvidia-visual-profiler

