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Abstract—The poster accompanying this summary exhibits
our experience porting the Opacity client library [1] to IBM’s
“Minsky” nodes [2] using OpenMP 4.5 R©. We constructed a GPU-
friendly container class that mimics existing library functionality.
We benchmarked our implementation on Lawrence Livermore
National Laboratory’s (LLNL) RZManta [3], a Minsky cluster.
In our benchmarks on a single POWER8 R© CPU and Tesla R©

P100 GPU, we observed up to a 4x speedup including CPU-GPU
data transfers and up to a 30x speedup excluding data transfers.
Optimizing to reduce register pressure and increase occupancy
may improve speedups. Our results demonstrate a successful and
beneficial library port to the CPU-GPU architecture.

I. INTRODUCTION

KULL [4] is one of LLNL’s multi-physics simulation codes
that models high energy density physics applications such as
inertial confinement fusion. KULL uses the Opacity client li-
brary to obtain opacity data for radiation transport simulations
and aims to run on CPU-GPU clusters in the future.

The Opacity client library is written in C++ and performs
bilinear interpolations and various extrapolations to provide
material opacities given density and electron temperature pairs.
An opacity is a physical quantity that dictates the behavior of
radiation as it interacts with a material, such as whether it
is absorbed or scattered. In order to perform these interpola-
tions and extrapolations, the library reads a data file, which
contains density and electron temperature values along with
their respective opacities, and distributes this data across many
classes. These classes interact with one another during runtime
to perform library functions.

OpenMP is used to achieve a portable, single source
code solution, and since version 4.0, it has provided sup-
port for GPU offloading through its device constructs.
OpenMP 4.5 provides additional features such as the target
enter/exit data construct [5], which is used in our
implementation.

The Opacity client library’s main worker is the Lookup()
function. The function itself is not computationally heavy, so
the largest opportunity for user code speedups comes from
increasing the throughput of simultaneous library calls (Figure
1). Therefore, the major contribution of this effort is to provide
offloading support for the library rather than accelerating
library functions.

Fig. 1. Expected kernel structure in user code to maximize throughput.

II. IMPLEMENTATION

Many of the classes that store interpolants use the C++
Standard Template Library and virtual functions, specifically
the std::vector templated class. While these features
provide convenience, they collectively make porting the code,
i.e. managing CPU-GPU data transfers and generating PTX
instructions for GPUs, more challenging.

To circumvent these issues, we created a GPU-compatible,
C-styled container class that directly stores all of the neces-
sary interpolant values and implements methods for identical
library functionality. In total, the development process took
around one month for an inexperienced OpenMP 4.5 devel-
oper.

Our implementation requires the following user code
changes:

1) Setting a library flag that enables target offloading
underneath existing function calls during the setup phase

2) Extracting the GPU-compatible object from the host
object that normally calls Lookup()

3) Swapping the original host object for the extracted object
to perform Lookup()’s

This implementation is not completely portable due to steps
(2) and (3), so these changes should be hidden using condi-
tional preprocessor macros for target offloading. In KULL, the
calls to Lookup() are grouped together, so these changes are
manageable. In the future, we wish to only require setting the
library flag.

This port is not currently optimized and profiling with
NVIDIA Visual Profiler [6] reveals high register pressure
and low occupancy; how they affect performance and how
they can be optimized is beyond the scope of this work.
Using IBM’s Clang 4.0 compiler, we observed 102 registers
per thread and 24.9% achieved occupancy. Using IBM’s XL
14.1 compiler, we observed 56 registers per thread and 50%
achieved occupancy.

III. ALTERNATIVE SOLUTIONS

Briefly, we will discuss alternative solutions for the two
aforementioned problems: the C++ Standard Template Library
and virtual functions. The underlying issue for both cases is
that data is bitwise copied between memory spaces. If the
data in question contains a pointer, that pointer may not be
valid after copying. This issue manifests as the data pointer
for std::vector and the virtual method table for virtual
functions. In addition, there is no support for modifying these
pointers directly.



Fig. 2. Example structure of timing code that excludes time for data
movement.

To resolve this issue for virtual functions, instances of
classes with virtual functions must be constructed inside target
regions to generate valid device function pointers. This can
be accomplished by allocating device memory and then using
placement new. Also, the virtual functions and their definitions
must be placed inside a declare target region, or one
can consider using a compiler flag to enable implicit target
declaration if it is supported. For std::vector, a custom
allocator can be defined that uses pinned or unified memory
[7].

IV. RESULTS

We ran an Opacity client library driver on an IBM
Power System

TM
S822LC [2], which features two ten-core

POWER8 R© prime CPUs, four NVIDIA Tesla R© P100 GPUs,
and NVLink 1.0 interconnects. Our driver mimics expected
KULL usage and collects timings for the Lookup() loop.
Wall times were collected on the host with 40 hardware threads
using the environment variable OMP_PLACES={0:40:2} in
order to limit the threads to one socket to avoid potential
NUMA effects. On the target device, two timings were col-
lected: one which includes the time required to map the query
data and one without (Figure 2). Speedups are calculated as:

Speedup = timeCPU

timeGPU

Fig. 3. Loop Speedup vs. Number of Lookups, including data mapping

Currently, KULL is required to map the query data con-
taining density and electron temperature pairs before calling
Lookup(). Accounting for this data movement, we see
speedups from 1.65x to 3.96x using the Clang compiler and

1.28x to 2.73x using the XL compiler, depending on the
number of lookups (Figure 3).

In the future, we expect KULL to initialize the query
data in GPU memory. Thus, this data transfer will become
unnecessary, resulting in speedups from 1.75x to 29.74x using
Clang and 1.37x to 19.21x using XL (Figure 4).

Fig. 4. Loop Speedup vs. Number of Lookups, excluding data mapping

V. CONCLUSION

With the ever increasing importance of the CPU-GPU
architecture, many scientific applications will want to claim
the advantages therein. With an unoptimized OpenMP 4.5
port, which features at its core a C-styled container class,
performance gains were still observed and very attainable,
peaking at 4x when including CPU-GPU data transfers and
30x when all of the data can be kept in GPU memory. We
are integrating the ported library into KULL, and we hope
to experiment with different runtime configurations and code
structures to optimize the utilization of GPU resources.
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