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About Me

 Grew up in western suburbs of Chicago

 Graduated in 2015 from the College of 
William & Mary in Virginia with B.S. in C.S.

 Joined LLNL in July 2015 and assigned to 
Monte Carlo radiation transport code team

 Interests: Monte Carlo, compilers, physics

– I get to use all three at LLNL

Me as a summer student
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Introduction
 Monte Carlo is a numerical method

 Monte Carlo can be used to:

1. Support analytic solutions

2. Solve problems without analytic 
solutions

 R is a powerful programming language well-
suited to Monte Carlo simulation

 At LLNL, we use Monte Carlo to do 1. and 2.
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Outline
 History of Monte Carlo

 Mathematical underpinnings
– Random variables
– Probability functions
– Random variate generation

 Examples
– MC Integration
– Point Estimator Probability
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History of Monte Carlo
 Ulam, von Neumann, and 

Metropolis developed Monte 
Carlo in the 1940's 

– All were employees at 
Los Alamos National Lab

 Named after Monte Carlo 
Casino in Monaco

 Initially used for neutron transport

 Used today in biology, finance, engineering, computer graphics, ...

Image credits: (top) Los Alamos National Lab (bottom) 
https://www.lancaster.ac.uk/pg/jamest/Group/intro2.html
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Random Variables
 A random variable is a function X that maps each outcome s  ∈

S in the sample space of a random experiment to one real 
number X(s) = x in the support  = { � x|x = X(s), s  S∈ }

 Consider the random experiment in which two coins are flipped
– S = {HH, HT, TT, TH}, E = {HT}, P(E) = ¼
– Define X = number of heads appearing in the two tosses
–  � = { x|x = 0, 1, 2}, A = {x|x = 2}, P(X  A∈ ) = ¼ 

Random experiment Random variable
X

S �

Figure credit: Leemis (2011).
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Probability Functions
 Probability mass function (pmf)

– f(x) = P(X = x) is the probability that X takes on the value x as the result of a 
random experiment. f(x) satisfies  

 Probability density function (pdf) 

– continuous analog of pmf

 Cumulative distribution function (cdf) 

– F(x) = P(X ≤ x) is the probability that X takes on a value less than or eq to x

– Since F(x) is a probability, 0 ≤ F(x) ≤ 1 
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Random Variate Generation
 An instance of a random variable X, denoted x and called a 

random variate, can be generated via

where the inverse cdf          exists and random variate
– Every computer comes with U(0,1) PRNG

 Consider an exponentially-distributed random variable X

pdf            cdf     inverse-cdf
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Example 1 MC Integration
 Find
 Not straightforward analytically. The trick is to find      instead

switching to polar coordinates

thus
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Example 1 MC Integration
 Consider the same 

problem geometrically: 
the area under the 
curve is the integral

 Is there a way to 
calculate the shaded 
area numerically?

– Monte Carlo 
integration
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Describing MC Integration
 Imagine throwing darts at the 

image on the right

 We can find the integral by

1. Counting the number of darts   
 landing inside the curve

2. Dividing by the number of          
 darts thrown

3. Multiplying by the total area
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The R Programming Language
 R is an open source programming language

 R first appeared in 1993

 The R interpreter 
– scripting, data exploration, graphics

 R package library
– huge community of active users

Image credit: The R Foundation (CC-BY-SA 4.0). 
https://www.r-project.org/logo/

 R language features
– Vector arithmetic, functional programming support, slow 

imperative code execution, {r,p,d,q}$dist 
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Example 1 MC Integration
 Using R to find by Monte Carlo integration

 Running for N = 4^1, 4^2, …, 4^12 yields e.g.
[0] 0.000, 6.250, 4.516, 2.066, 3.314, 3.443, 3.111, 3.094, 3.144, 3.136, 3.141, 3.140
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Example 1 MC Integration
 Graphically, we see
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Example 1 MC Integration
 Graphically, we see

Green points are inside and 
red points are outside curve

The integral 
that we are 
evaluating

Integral estimator squared. 
Approaches π as N ∞⟶

Sample size
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Example 1 MC Integration
 Visual convergence: colored dots appear as solid fill when 
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Example 1 MC Integration

 Increasing N gives us a 
better estimator, but 
also increases runtime

                 as                 in support 
of our analytic solution 
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MC Error Analysis
 The MC error is proportional to

where s is the sample standard 
deviation and N is the sample size

 To acheive 2x error reduction we need 
4x the sample size

 (Figure A) The curve with population 
standard deviation  = 2 has greater  �
spread than  = 1  �

 (Figure B) Bumps along edges are noise, 
a commonly used synonym for error 

Figure 
A

Figure 
B
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Example 2 Point Estimator Probability

                        is the sample mean
                                    and                                      are order statistics

Problem credit: Leemis (2017). Personal communication.



LLNL-PRES-734172
20

Example 2 Point Estimator Probability

                        is the sample mean

                                    and                                      are order statistics

there exists an 
analytic solution
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Example 2 Point Estimator Probability
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Example 2 Point Estimator Probability
 Graphically, we see
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Example 2 Point Estimator Probability
 Graphically, we see

The probability 
estimator for the 
3 point estimates, 
which are 
equivalent to % of 
plot covered by 
each color

Sample size

Color of (x1, x2) 
indicates which 
estimator is 
closest to 
parameter θ = 10 
at (x1, x2)
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Example 2 Point Estimator Probability
 Graphically, we see

Use a ruler and 
area formulas to 
find analytic 
solution
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Summary
 Monte Carlo is a numerical method

 Monte Carlo can be used to:

1. Support analytic solutions

2. Solve problems without analytic 
solutions

 R is a powerful programming language well-
suited to Monte Carlo simulation

 At LLNL, we use Monte Carlo to do 1. and 2.
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Recognition
 Thanks to Kate Burnett, Marcey Kelley, Tom Stitt, and 

Bujar Tagani for organizing the seminar series, inviting me 
to present, and recommending the topic of this talk

 Thanks to Jason Burnstein, Katie Schmidt, and Maren 
Hunsberger for providing valuable feedback on an early 
version of this talk

 Thanks to Professor Leemis for inspiring this talk, teaching 
me all of its contents, and continuing to inspire me
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