
LLNL-ABS-697958

Optimizing Application I/O by Leveraging the
Storage Hierarchy Using the Scalable Checkpoint
Restart Library with a Monte Carlo Particle
Transport Application on the Trinity Advanced
Computing System

M. M. Pozulp, G. B. Becker, P. S. Brantley, S. A.
Dawson, K. M. Mohror, A. T. Moody, M. J. O'Brien

July 18, 2016

SC16
Salt Lake City, UT, United States
November 14, 2016 through November 17, 2016

Optimizing Application I/O by Leveraging the
Storage Hierarchy Using the Scalable Checkpoint

Restart Library with a Monte Carlo Particle
Transport Application on the Trinity Advanced

Computing System
Michael M. Pozulp, Gregory B. Becker, Patrick S. Brantley, Shawn A. Dawson,

Kathryn Mohror, Adam T. Moody, and Matthew J. O’Brien
Lawrence Livermore National Laboratory

Abstract—The poster accompanying this summary exhibits our
experience using the Scalable Checkpoint Restart library (SCR)
[1] to achieve I/O speedups during checkpoint and restart. We
ran Lawrence Livermore National Laboratory’s (LLNL) Monte
Carlo particle transport code, Mercury [2], on Trinity [3] at Los
Alamos National Laboratory (LANL). We performed a weak
scaling study and observed speedups at 16 nodes and above,
including a 30x maximum speedup at 4096 nodes. We bench-
marked read performance by restarting from the checkpoints we
wrote and observed speedups for 11 out of 12 counts, including
a 9x maximum speedup at 2048 nodes. Finally, we ran a user
problem in which using SCR reduced median time-to-checkpoint
by 20x. Our results show that leveraging the storage hierarchy
is necessary for optimizing application I/O.

I. INTRODUCTION

Writing checkpoints to the parallel file system (PFS) is very
expensive due to multiple sources of contention. Compute
nodes sending data to I/O gateway nodes compete with I/O and
communication traffic on the network. Gateway nodes sending
data to the PFS compete with I/O traffic from gateway nodes
that are connected to other clusters. The Scalable Checkpoint
Restart library (SCR) [1] presents a storage hierarchy that
reduces checkpoint cost by providing alternatives to the PFS.
The storage hierarchy on Trinity at Los Alamos National Lab-
oratory (LANL) [3] has four levels of interest to applications
writing checkpoints. They are

1) Node-local storage using RAM disk
2) Node-local storage augmented by one of SCR’s redun-

dancy schemes [4]
3) Burst buffer storage using a pool of solid-state drives
4) PFS storage using Lustre

Most applications with which we are familiar restrict their
I/O to level 4. One reason is because the PFS is reliable.
Sophisticated data storage schemes are employed on the
PFS to reduce the likelihood of unrecoverable data loss to
a minimum. Another reason is programmability. No special
coding is necessary for applications to run on a PFS instead
of on a serial file system. The cost of these advantages is
performance. When the PFS is used by many applications

simultaneously, there is contention for I/O bandwidth that
can hurt application I/O performance. Since the bandwidth
of the PFS is not unlimited, even the performance of a single
application with exclusive use of the PFS is subject to I/O
scalability issues. Applications that encounter I/O contention
or non-scalability must consider alternatives to the PFS if
optimal I/O is desired.

SCR research has confirmed this analysis by showing that
the PFS scales well until the PFS bandwidth is saturated. A
node-local alternative is RAM disk, which was shown to scale
indefinitely. SCR also provides redundancy schemes and an
abstraction layer for reliability and programmability [1].

We are interested in using SCR to leverage this storage hier-
archy to optimize I/O performance of Mercury [2], Lawrence
Livermore National Laboratory’s (LLNL) Monte Carlo particle
transport code. Our test bed has been Trinity, where Mercury
will be used for production runs in the near future. A simple
way to achieve results with reduced statistical variation in
Mercury is to simulate more particles. One cost of simulations
involving more particles is increased checkpoint size, because
Mercury needs the state of every particle that it was tracking
at the time of a checkpoint in order to restart the simulation
from that checkpoint.

For this first investigation of I/O performance on Trinity, we
sought to compare levels 2 and 4 of the storage hierarchy. That
is, we used SCR to compare the cost of writing to the PFS
versus RAM disk augmented with SCR’s XOR redundancy
scheme, which is the default operating mode provided by
SCR [4]. Since SCR research has shown the PFS scaling well
until the PFS bandwidth is saturated, while RAM disk scales
indefinitely, we expect RAM disk to outperform the PFS at
sufficient scale.

II. WEAK SCALING STUDY

We investigated SCR by performing a weak scaling study of
I/O performance using Mercury on LANL’s Trinity machine.
We ran Mercury with 32 MPI ranks per node, 1 rank per core,
with and without SCR RAM disk checkpoint caching enabled.

Each rank wrote 20 MB using an N-N I/O pattern. Writing
checkpoints to RAM disk proved faster than writing to the PFS
at 16 nodes and above, including a 30x maximum speedup at
4096 nodes (Fig. 1).

Fig. 1. Time-to-checkpoint versus node count for weak scaling study.

In both Fig. 1 and Fig. 2, “XOR SCR” in the legend
indicates that SCR was used with the “XOR” redundancy
scheme [4]. “InfiniteScaling.inp” in the title of Fig. 1 refers to
the weak scaling problem run by Mercury. In this problem, P
particles per processor are tracked through one of N evenly-
sized sections of material. We checkpoint immediately, while
each of N processors still has exactly P particles in its section
of material. Running P = 100000 yielded 20 MB per rank.

The PFS and RAM disk scaling that we observed is con-
sistent with SCR research [1]. Time-to-checkpoint on RAM
disk appears to be constant with respect to checkpoint size, a
perfect scaling result. Time-to-checkpoint on the PFS appears
constant up to a point, after which it increases with checkpoint
size, a poor scaling result. The checkpoint size after which the
PFS is no longer scalable corresponds to the bandwidth limit
of the PFS at the time that we were performing the study.

We studied read performance by restarting from the check-
points we wrote. RAM disk produced speedups when com-
pared to the PFS for 11 out of 12 node counts, including a 9x
maximum speedup at 2048 nodes (see poster).

III. USER PROBLEM

We investigated the impact of using SCR to perform multi-
level checkpointing in a production setting. The problem
we selected is representative of a typical user workload for
Mercury on Trinity. In the user problem we employed the same
20 MB per-rank write size and N-N I/O pattern that we used
in our weak scaling study. We ran on 36 nodes using 32 MPI
ranks per node, 1 rank per core. We wrote 1 checkpoint every
10 simulation cycles, yielding 18 total checkpoints (Fig 2).

When writing checkpoints to RAM disk instead of the PFS,
we observed a median time-to-checkpoint speedup of 20x. For
resiliency, SCR wrote to RAM disk and also flushed the 10th
checkpoint to the PFS at cycle 90. Let dr be the cost of this
operation, calculated as the percent difference between the

Fig. 2. Time-to-checkpoint versus cycle number for user problem.

average time-to-checkpoint without SCR, tavg , and time-to-
checkpoint with SCR at cycle 90, tscr90 (1).

dr =
|tavg − tscr90|

tavg
· 100% =

|10.3− 12.3|
10.3

· 100% = 19.4% (1)

We expect dr to disappear as checkpoint size increases
because tavg will increase while tavg − tscr90 stays constant.
This is for the same reason that we used SCR in the first
place. Namely, the PFS scales well only until its bandwidth is
saturated, while RAM disk scales indefinitely [1].

IV. CONCLUSION

Exploring alternatives to the PFS is a necessary path towards
optimal application I/O. We realized significant speedups on
RAM disk, peaking at 30x for writing a checkpoint and at 9x
for restarting from it. In a user problem typical of production
runs that we expect on Trinity, we reduced median time-to-
checkpoint by 20x. SCR provided us with an abstraction layer
to leverage the storage hierarchy that will allow us to continue
to explore hierarchical I/O at different levels without additional
porting effort. Our next step will be to investigate the I/O
performance of Mercury on Trinity’s burst buffer.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

REFERENCES

[1] Adam Moody, Greg Bronevetsky, Kathryn Mohror, Bronis R. de Supinski,
Design, Modeling, and Evaluation of a Scalable Multi-level Checkpoint-
ing System, LLNL-CONF-427742, Supercomputing 2010, New Orleans,
LA, November 2010.

[2] Brantley, P. S., R. C. Bleile, S. A. Dawson, M. S. McKinley, M. J.
O’Brien, M. Pozulp, R. J. Procassini, D. Richards, S. M. Sepke, and
D. E. Stevens, Mercury User Guide: Version 5.2, LLNL-SM-560687
(Modification #10), Lawrence Livermore National Laboratory Report
(2016).

[3] Trinity Advanced Technology System. Web Page. Accessed Thu Apr 14,
2016. http://www.lanl.gov/projects/trinity/

[4] SCR Users Guide. Web Page. Accessed Thu Apr 14, 2016.
https://computation.llnl.gov/project/scr/files/scr UsersGuide v1.1.8.pdf

