
National Aeronautics and Space Administration

www.nasa.gov

Creating a Framework for Systematic Benchmarking of
High Performance Computing Systems

The Applications Performance & Productivity (APP) Group of the
High-End Computing Capability (HECC) Project is tasked with
ensuring maximal performance of the supercomputing systems
operated at NASA Ames. As part of this task, one focus is to
benchmark current and future systems so as to guide users to the
most suitable resources for their applications. The goal of this project
is to construct a semi-automated test framework for benchmarking.

Provisioning a Database

NPB Performance Scaling
An initial proof-of-concept implementation has been utilized to
examine parallel performance scaling across the four generations
of Intel Xeon processors that compose the Pleiades supercomputer
system. From newest to oldest, they are Sandybridge, Westmere,
Nehalem, and Harpertown.

NPB Performance Variation
In addition to performance scaling, the framework has been used to
analyze substantial performance variation in the NPB applications
run on Pleiades during the NPB performance scaling investigation.

Implementation Results: NAS Parallel Benchmarks (NPBs)

Michael M. Pozulp, July 2013

The proposed test framework
requires a persistent, flexible,
scalable, and reliable data
storage mechanism (Figure 2)
with an interface for efficient
insertion and extraction of data
records.

Introduction

Benchmarking Workflow

Figure 2. Informal entity-relationship diagram.

The benchmarking workflow has three essential steps: parameter
selection, code execution, and result interpretation (Figure 1). Code
compilation must occur before code execution, but may come before

Figure 1. Benchmarking workflow.

Figure 3. CG benchmark Class C scaling results by processor type. Figure 4. CG benchmark Class C results on Sandybridge processors.

It was hypothesized that as the number of processors increased
toward infinity, communication-intensive applications would hit a
network-imposed performance ceiling and nullify any performance
gains resultant from hardware improvements in newer generations
of Intel Xeon processors. That ceiling was observed simultaneously
for all four generations at 512 processes, but the performance did
not converge to a common value. Rather, using data collected
within the framework, it is apparent that performance remained
better for newer generations, and worse for older (Figure 3).

It is hypothesized that (1) for each particular NPB, the extent of the
variation corresponds to the communication intensity of the
application kernel, and (2) there is a quantifiable correlation
between performance degradation and the logical network distance
that communicated data must traverse. From data collected within
the framework, one may observe substantial relative standard
deviation, that is, the ratio of the standard deviation to the average,
converted to a percentage, increasing along with the number of
processors (Figure 4).

 Conclusion

Future Work

 Scientific computing operations running high performance systems
must benchmark those systems. The challenge of creating a useful
test framework for benchmarking is immense, but so is the benefit.
A proof-of-concept implementation has been used to: streamline
personal workflow with automation, support team workflow with
centralized result sharing, and assist in performance analysis with
result visualization capabilities. In running NPBs, it has acquired
data necessary to conduct ongoing investigations into NPB
performance variation and to examine hypotheses linking
communication intensity of application kernels and logical network
distances to application performance variation and degradation.

Implementation Details

A proof-of-concept framework was implemented using Python- and shell-
scripting along with a Postgresql database, the scheduling utility cron,
and job scheduler PBS Pro. It selects parameters, compiles executables,
submits jobs, parses results, inserts/retrieves data, verifies results, and
produces graphs of the performance results.

Maximal generality of the benchmarking test framework requires
sufficient abstraction of its specification in order to capture the
common generalities of benchmarking workflows. To address the
tremendous variation in specific workflows and benchmarking tasks,
future implementations of this framework should provide APIs for
user-level customization and scripting. With an API providing the
interface, users would be able to mold their workflow to the high-
level framework, unifying any dissonant pieces and crafting an
automated mechanism for benchmarking. In a sense, a complete
system would have the user step away from the details of job
scripting and replace it with a new paradigm of framework scripting.

Acknowledgments: Work performed under the expert direction of Mentor and Division Chief Piyush Mehrotra, APP Group members Henry Jin,
Bob Hood, Johnny Chang and help from many others in the NASA Advanced Supercomputing (NAS) Division at NASA Ames Research Center.

or after parameter selection, depending on the
whether the altered parameters are compile-time
or run-time parameters, and also whether the
desired executable has already been created in a
previous compilation. Further complications
include: intractable combinations of parameters
and system configurations, issues in organization
and persistence of benchmarking results, and
problems of determining benchmark performance
or computational success.

In accordance with the relational model, separation of benchmarking
parameters from results avoids data duplication and saves on storage.

